自古流傳著一個傳言...在 Go 語言面試的時候必有人會問介面(interface)的實作原理。這又是為什麼?為何對介面如此執著?
其實,Go 語言的介面設計在整體扮演著非常重要的角色,沒有他,很多程式估計都跑的不愉快了。
在 Go 語言的語意上,只要某個類型實作了所定義的一組方法集,就認為其就是同一種類型,是一個東西。大家常稱之為鴨子類型(Duck typing),因為其與鴨子類型類型的定義相對吻合。
在維基百科中,鴨子類型的諺語定義為」If it looks like a duck, swims like a duck , and quacks like a duck, then it probably is a duck.“,翻譯過來就是”如果它看起來像鴨子,像鴨子一樣游泳,像鴨子一樣嘎嘎叫,那他就可以認為是鴨子“。
回歸到 Go 語言,在介面之下,介面又蘊含了怎麼樣的底層結構,其設計原理和思考又是什麼呢?我們不能只看表面,接下來在這一章節中都會進行一一分析和道來。看看其深層到底是何 「物」。
Go 語言中的介面宣告:
type Human interface { Say(s string) error }
關鍵字主體為 type xxx interface
,緊接著可以在方括號中編寫方法集,用於宣告和定義該介面所包含的方法集。
更進一步的程式碼示範:
type Human interface { Say(s string) error } type TestA string func (t TestA) Say(s string) error { fmt.Printf("煎鱼:%s\n", s) return nil } func main() { var h Human var t TestA _ = t.Say("炸鸡翅") h = t _ = h.Say("烤羊排") }
輸出結果:
煎鱼:炸鸡翅 煎鱼:烤羊排
我们在上述代码中,声明了一个名为 Human
的 interface
,其包含一个 Say
方法。同时我们声明了一个 TestA
类型,也有自己的一个 Say
方法。他们两者的方法入参和出参类型均为一样。
而与此同时,我们在主函数 main
中通过声明和赋值,成功将类型为 TestA
的变量 t
赋给了类型为 Human
的变量 h
,也就是说两者只因有了个 Say
方法,在 Go 语言的编译器中就认为他们是 “一样” 的了,这也就是业界中常说的鸭子类型。
通过上面的功能代码一看,似乎 Go 语言非常优秀。一个接口,不同的类型,2 个包含相同的方法,也能够对标到一起。
接口到底是怎么实现的呢?底层数据结构又是什么?带着问题,我们开始深挖细节之路。
在 Go 语言中,接口的底层数据结构在运行时一共分为两类结构体(struct),分别是:
runtime.eface
结构体:表示不包含任何方法的空接口,也称为 empty interface。runtime.iface
结构体:表示包含方法的接口。首先我们来介绍 eface
,看看 “他” 到底是何许人也。源码如下:
type eface struct { _type *_type data unsafe.Pointer }
其表示不包含任何方法的空接口。在结构上来讲 eface
非常简单,就两个属性,分别是 _type
和 data
属性,分别代表底层的指向的类型信息和指向的值信息指针。
再进一步到 type
属性里看看,其包含的类型信息更多:
type _type struct { size uintptr ptrdata uintptr hash uint32 tflag tflag align uint8 fieldAlign uint8 kind uint8 equal func(unsafe.Pointer, unsafe.Pointer) bool gcdata *byte str nameOff ptrToThis typeOff }
kindBool
、kindInt
、kindInt8
、kindInt16
等。总结一句,就是类型信息所需的信息都会存储在这里面,其中包含字节大小、类型标志、内存对齐、GC 等相关属性。而在 eface
来讲,其由于没有方法集的包袱,因此只需要存储类型和值信息的指针即可,非常简单。
其次就是我们日常在应用程序中应用的较多的 iface
,源码如下:
type iface struct { tab *itab data unsafe.Pointer }
与 eface
结构体类型一样,主要也是分为类型和值信息,分别对应 tab
和 data
属性。但是我们再加思考一下,为什么 iface
能藏住那么多的方法集呢,难道施了黑魔法?
为了解密,我们进一步深入看看 itab
结构体。源码如下:
type itab struct { inter *interfacetype _type *_type hash uint32 _ [4]byte fun [1]uintptr }
inter
:接口的类型信息。_type
:具体类型信息hash
:_type.hash
的副本,用于目标类型和接口变量的类型对比判断。fun
:底层数组,存储接口的方法集的具体实现的地址,其包含一组函数指针,实现了接口方法的动态分派,且每次在接口发生变更时都会更新。对应 func
属性会在后面的章节进一步展开讲解,便于大家对于接口中的函数指针管理的使用和理解,在此可以先行思考长度为 1 的 uintptr 数组是如何做到存储多方法的?
接下来我们进一步展开 interfacetype
结构体。源码如下:
type nameOff int32 type typeOff int32 type imethod struct { name nameOff ityp typeOff } type interfacetype struct { typ _type pkgpath name mhdr []imethod }
_type
:接口的具体类型信息。pkgpath
:接口的包(package)名信息。mhdr
:接口所定义的函数列表。而相对应 interfacetype
,还有各种类型的 type
。例如:maptype
、arraytype
、chantype
、slicetype
等,都是针对具体的类型做的具体类型定义:
type arraytype struct { typ _type elem *_type slice *_type len uintptr } type chantype struct { typ _type elem *_type dir uintptr } ...
若有兴趣自行翻看 runtime
里相应源码即可,都是一些基本数据结构信息的存储和配套方法,就不在此一一展开讲解了。
总结来讲,接口的数据结构基本表示形式比较简单,就是类型和值描述。再根据其具体的区别,例如是否包含方法集,具体的接口类型等进行组合使用。
在接口的具体应用使用场景中,有一个是大家常常会碰到,甚至会对其产生较大纠结心里的东西。那就是到底用值接收者,又或是用指针接收者来声明。
演示代码如下:
type Human interface { Say(s string) error Eat(s string) error } type TestA struct{} func (t TestA) Say(s string) error { fmt.Printf("说煎鱼:%s\n", s) return nil } func (t *TestA) Eat(s string) error { fmt.Printf("吃煎鱼:%s\n", s) return nil } func main() { var h Human = &TestA{} _ = h.Say("催更") _ = h.Eat("真香") }
在 Human
接口中,其包含 Say
和 Eat
方法,并且在 TestA
结构体中我们进行了针对性的实现。
具体的区别就是:
Say
方法中是值接收对象,如:(t TestA)
。Eat
方法中是指针接收对象,如:(t *TestA)
。最终的输出结果:
说煎鱼:催更 吃煎鱼:真香
如果我们将演示代码的主函数 main 改成下述这样:
func main() { var h Human = TestA{} _ = h.Say("催更") _ = h.Eat("真香") }
你觉得这段代码还能正常运行吗?在编译时会出现如下报错信息:
# command-line-arguments ./main.go:23:6: cannot use TestA literal (type TestA) as type Human in assignment: TestA does not implement Human (Eat method has pointer receiver)
显然是不能的。因为接口校验不对,编译器过不了。其根本原因在于 Eat
是指针接收者。而当声明改为 TestA{}
后,其就会变成值对象,所以不匹配。
这时候又会出现新的问题,为什么在上面代码声明为 &TestA{}
时,那肯定是指针引用了,那为什么 Say
方法又能正常运行,不会报错呢?
其实 TestA{}
实现了 Say
方法,那么 &TestA{}
也能自动拥有该方法。显然,这是 Go 语言自身在背后做了一些事情。
因此如果我们实现了一个值对象的接收者时,也会相应拥有了一个指针接收者。两者并不会互相影响,因为值对象会产生值拷贝,对象会独立开来。
而指针对象的接收者不行,因为指针引用的对象,在应用上是期望能够直接对源接收者的值进行修改,若又支持值接收者,显然是不符合其语义的。
既然支持值接收,又支持指针接收。那平时在工程应用开发中,到底用谁?还是说随便用?
其实问题的答案,在前面就有提到。本质上还是要看你业务逻辑所期望修改的是什么?还是说程序很严谨,每次都重新 new
一个,是值又或是指针引用对于程序逻辑的结果都没有任何的影响。
总结一下,如果你想使用指针接收者,可以想想是否有以下诉求:
但若应用场景没什么区别,只是个人习惯问题就不用过于纠结了,适度统一也是很重要的一环。
在 Go 语言中使用接口,必搭配一个 “技能”。那就是进行类型断言(type assertion):
var i interface{} = "吃煎鱼" // 进行变量断言,若不判断容易出现 panic s := i.(string) // 进行安全断言 s, ok := i.(string)
在 switch case
中,还有另外一种写法:
var i interface{} = "炸煎鱼" // 进行 switch 断言 switch i.(type) { case string: // do something... case int: // do something... case float64: // do something... }
采取的是 (变量).(type)
的调用方式,再给予 case
不同的类型进行判断识别。在 Go 语言的背后,类型断言其实是在编译器翻译后,根据 iface
和 eface
分别对应了下述方法:
func assertI2I2(inter *interfacetype, i iface) (r iface, b bool) { tab := i.tab if tab == nil { return } if tab.inter != inter { tab = getitab(inter, tab._type, true) if tab == nil { return } } r.tab = tab r.data = i.data b = true return } func assertI2I(inter *interfacetype, i iface) (r iface) func assertE2I2(inter *interfacetype, e eface) (r iface, b bool) func assertE2I(inter *interfacetype, e eface) (r iface)
主要是根据接口的类型信息进行一轮判断和识别,基本就完成了。主要核心在于 getitab
方法,会在后面进行统一介绍和说明。
演示代码如下:
func main() { x := "煎鱼" var v interface{} = x fmt.Println(v) }
查看汇编代码:
0x0021 00033 (main.go:9) LEAQ go.string."煎鱼"(SB), AX 0x0028 00040 (main.go:9) MOVQ AX, (SP) 0x002c 00044 (main.go:9) MOVQ $6, 8(SP) 0x0035 00053 (main.go:9) PCDATA $1, $0 0x0035 00053 (main.go:9) CALL runtime.convTstring(SB) 0x003a 00058 (main.go:9) MOVQ 16(SP), AX 0x003f 00063 (main.go:10) XORPS X0, X0
主要对应了 runtime.convTstring
方法。同时很显然其是根据类型来区分来方法:
func convTstring(val string) (x unsafe.Pointer) { if val == "" { x = unsafe.Pointer(&zeroVal[0]) } else { x = mallocgc(unsafe.Sizeof(val), stringType, true) *(*string)(x) = val } return } func convT16(val uint16) (x unsafe.Pointer) func convT32(val uint32) (x unsafe.Pointer) func convT64(val uint64) (x unsafe.Pointer) func convTstring(val string) (x unsafe.Pointer) func convTslice(val []byte) (x unsafe.Pointer) func convT2Enoptr(t *_type, elem unsafe.Pointer) (e eface) func convT2I(tab *itab, elem unsafe.Pointer) (i iface) ...
前面有提到接口中的 fun [1]uintptr
属性会可以存储接口的方法集,但不知道为什么。
接下来我们将进行具体的分析,演示代码:
type Human interface { Say(s string) error Eat(s string) error Walk(s string) error } type TestA string func (t TestA) Say(s string) error { fmt.Printf("煎鱼:%s\n", s) return nil } func (t TestA) Eat(s string) error { fmt.Printf("煎鱼:%s\n", s) return nil } func (t TestA) Walk(s string) error { fmt.Printf("煎鱼:%s\n", s) return nil } func main() { var h Human var t TestA h = t _ = h.Eat("烤羊排") _ = h.Say("炸鸡翅") _ = h.Walk("去炸鸡翅") }
执行 go build -gcflags '-l' -o awesomeProject .
编译后,再次执行 go tool objdump -s "main" awesomeProject
。
查看具体的汇编代码:
LEAQ go.itab.main.TestA,main.Human(SB), AX TESTB AL, 0(AX) MOVQ 0x10(SP), AX MOVQ AX, 0x28(SP) MOVQ go.itab.main.TestA,main.Human+32(SB), CX MOVQ AX, 0(SP) LEAQ go.string.*+3048(SB), DX MOVQ DX, 0x8(SP) MOVQ $0x9, 0x10(SP) CALL CX MOVQ go.itab.main.TestA,main.Human+24(SB), AX MOVQ 0x28(SP), CX MOVQ CX, 0(SP) LEAQ go.string.*+3057(SB), DX MOVQ DX, 0x8(SP) MOVQ $0x9, 0x10(SP) CALL AX MOVQ go.itab.main.TestA,main.Human+40(SB), AX MOVQ 0x28(SP), CX MOVQ CX, 0(SP) LEAQ go.string.*+4973(SB), CX MOVQ CX, 0x8(SP) MOVQ $0xc, 0x10(SP) CALL AX
结合来看,虽然 fun
属性的类型是 [1]uintptr
,只有一个元素,但其实就是存放了接口方法集的首个方法的地址信息,接着根据顺序往后计算并获取就好了。也就是说其是存在一定规律的。在存入方法时就决定了,所以获取也能明确。
我们进一步展开,看看 itab hash table 是如何获取和新增的。
getitab
方法的主要作用是获取 itab
元素,若不存在则新增。源码如下:
func getitab(inter *interfacetype, typ *_type, canfail bool) *itab { // 省略一些边界、异常处理 var m *itab t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) if m = t.find(inter, typ); m != nil { goto finish } lock(&itabLock) if m = itabTable.find(inter, typ); m != nil { unlock(&itabLock) goto finish } m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(inter.mhdr)-1)*sys.PtrSize, 0, &memstats.other_sys)) m.inter = inter m._type = typ m.hash = 0 m.init() itabAdd(m) unlock(&itabLock) finish: if m.fun[0] != 0 { return m } panic(&TypeAssertionError{concrete: typ, asserted: &inter.typ, missingMethod: m.init()}) }
atomic.Loadp
方法加载并查找现有的 itab hash table,看看是否是否可以找到所需的 itab 元素。lock
方法对 itabLock
上锁,并进行重试(再一次查找)。finish
标识的收尾步骤。itabAdd
方法新增到全局的 hash table 中。fun
属性的首位地址,继续后续业务逻辑。itabAdd
方法的主要作用是将所生成好的 itab
元素新增到 itab hash table 中。源码如下:
func itabAdd(m *itab) { // 省略一些边界、异常处理 t := itabTable if t.count >= 3*(t.size/4) { // 75% load factor t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true)) t2.size = t.size * 2 iterate_itabs(t2.add) if t2.count != t.count { throw("mismatched count during itab table copy") } atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) t = itabTable } t.add(m) }
mallocgc
方法申请内存,按既有 size
大小扩容双倍容量。itab
元素到 hash table 中。在本文中,我们先介绍了 Go 语言接口的 runtime.eface
和 runtime.iface
两个基本数据结构,其代表了一切的开端。
随后针对值接受者和指针接收者进行了详细的说明,同时日常用的较多的类型断言和转换也一一进行了描述。
最后对接口的多方法这个神秘的地方进行了基本分析和了解,相信这一番轮流吸收下来,能够打开大家对接口的一个新的理解。
以上是一文吃透 Go 語言解密之介面 interface的詳細內容。更多資訊請關注PHP中文網其他相關文章!