Pandas+Pyecharts | 電子產品銷售資料分析視覺化+使用者RFM畫像
本期利用python 分析一份 電子產品銷售資料,看看:
每月訂單數量訂單金額
每天訂單數量分佈
#男女用戶訂單比例
#女性/男性購買商品TOP20
##各年齡層訂單數量訂單金額
使用者RFM等級畫像
#等等...
希望對大家有幫助,如有疑問或需要改進的地方可以聯絡小編。
# 所涉及的函式庫:
Pandas — 資料處理
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Pie from pyecharts.charts import Grid from pyecharts.charts import PictorialBar from pyecharts import options as opts from pyecharts.commons.utils import JsCode import warnings warnings.filterwarnings('ignore')
#2.1 讀取資料
df = pd.read_csv("电子产品销售分析.csv")

2.2 資料資訊
df.info()
一共有564169条数据,其中category_code、brand两列有部分数据缺失。
2.3 去掉部分用不到的列
df1 = df[['event_time', 'order_id', 'category_code', 'brand', 'price', 'user_id', 'age', 'sex', 'local']] df1.shape
(564169, 9)
2.4 去除重复数据
df1 = df1.drop_duplicates() df1.shape
(556456, 9)
2.5 增加部分时间列
df1['event_time'] = pd.to_datetime(df1['event_time'].str[:19],format="%Y-%m-%d %H:%M:%S") df1['Year'] = df1['event_time'].dt.year df1['Month'] = df1['event_time'].dt.month df1['Day'] = df1['event_time'].dt.day df1['hour'] = df1['event_time'].dt.hour df1.head(10)

2.6 过滤数据,也可以选择均值填充
df1 = df1.dropna(subset=['category_code']) df1 = df1[(df1["Year"] == 2020)&(df1["price"] > 0)] df1.shape
(429261, 13)
2.7 对年龄分组
df1['age_group'] = pd.cut(df1['age'],[10,20,30,40,50],labels=['10-20','20-30','30-40','40-50'])
2.8 增加商品一、二级分类
df1["category_code_1"] = df1["category_code"].apply(lambda x: x.split(".")[0] if "." in x else x) df1["category_code_2"] = df1["category_code"].apply(lambda x: x.split(".")[-1] if "." in x else x) df1.head(10)

def get_bar1(): bar1 = ( Bar() .add_xaxis(x_data) .add_yaxis("订单数量", y_data1) .extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value}万"))) .set_global_opts( legend_opts=opts.LegendOpts(pos_top='25%', pos_left='center'), title_opts=opts.TitleOpts( title='1-每月订单数量订单额', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='7%', pos_left="center" ) ) ) line = ( Line() .add_xaxis(x_data) .add_yaxis("订单额", y_data2, yaxis_index=1) ) bar1.overlap(line)

下半年的订单量和订单额相对于上半年明显增多。 8月份的订单量和订单额达到峰值。
def get_bar2(): pie1 = ( Pie() .add( "", datas, radius=["13%", "25%"], label_opts=opts.LabelOpts(formatter="{b}: {d}%"), ) ) bar1 = ( Bar(init_opts=opts.InitOpts(theme='dark', width='1000px', height='600px', bg_color='#0d0735')) .add_xaxis(x_data) .add_yaxis("", y_data, itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function))) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts( title='2-一月各天订单数量分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='7%', pos_left="center" ) ) ) bar1.overlap(pie1)

从每天的订单量上看,上中下旬订单量基本持平,占比都在30%以上,上旬和中旬要稍微高一点。

从订单时段上看,上午的订单要明显高于下午,占比达到了70.26%,尤其是在早上7:00-11:00之间。
男性订单数量占比49.55%,女性订单数量占比50.45%,基本持平。
3.5 女性/男性购买商品TOP20
def get_bar3(): bar1 = ( Bar() .add_xaxis(x_data1) .add_yaxis('女性', y_data1, label_opts=opts.LabelOpts(position='right') ) .set_global_opts( title_opts=opts.TitleOpts( title='5-女性/男性购买商品TOP20', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='3%', pos_left="center"), legend_opts=opts.LegendOpts(pos_left='20%', pos_top='10%') ) .reversal_axis() ) bar2 = ( Bar() .add_xaxis(x_data2) .add_yaxis('男性', y_data2, label_opts=opts.LabelOpts(position='right') ) .set_global_opts( legend_opts=opts.LegendOpts(pos_right='25%', pos_top='10%') ) .reversal_axis() ) grid1 = ( Grid() .add(bar1, grid_opts=opts.GridOpts(pos_left='12%', pos_right='50%', pos_top='15%')) .add(bar2, grid_opts=opts.GridOpts(pos_left='60%', pos_right='5%', pos_top='15%')) )

男性女性购买商品TOP20基本一致:smartphone、notebook、refrigerators、headphone等四类商品购买量比较大。
在10-50年龄段内,随着年龄段的增加,订单量和订单金额也在逐步增大。 细分的话,20-30和40-50这两个年龄段稍高一些。
3.7 各年龄段购买商品TOP10
3.8 用户RFM等级画像
RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为(R)、购买的总体频率(F)以及花了多少钱(M)三项指标来描述该客户的价值状况,从而能够更加准确地将成本和精力更精确的花在用户层次身上,实现针对性的营销。
用户分类:
def rfm_func(x): level = x.apply(lambda x:"1" if x > 0 else '0') RMF = level.R + level.F + level.M dic_rfm ={ '111':'重要价值客户', '011':'重要保持客户', '101':'重要发展客户', '001':'重要挽留客户', '110':'一般价值客户', '100':'一般发展客户', '010':'一般保持客户', '000':'一般挽留客户' } result = dic_rfm[RMF] return result
计算等级:
df_rfm = df1.copy() df_rfm = df_rfm[['user_id','event_time','price']] # 时间以当年年底为准 df_rfm['days'] = (pd.to_datetime("2020-12-31")-df_rfm["event_time"]).dt.days # 计算等级 df_rfm = pd.pivot_table(df_rfm,index="user_id", values=["user_id","days","price"], aggfunc={"user_id":"count","days":"min","price":"sum"}) df_rfm = df_rfm[["days","user_id","price"]] df_rfm.columns = ["R","F","M"] df_rfm['RMF'] = df_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1) df_rfm.head()

用户画像:

根据RFM模型可将用户分为以下8类:
重要价值客户:最近消费时间近、消费频次和消费金额都很高。 重要保持客户:最近消费时间较远,消费金额和频次都很高。
重要發展客戶:最近消費時間較近、消費金額高,但頻次不高、忠誠度不高,很有潛力的用戶,必須重點發展。
重要挽留客戶#:最近消費時間較遠、消費頻次不高,但消費金額高的用戶,可能是將要流失或己經要流失的用戶,應給予挽留措施。
一般價值客戶#:最近消費時間近,頻率高但消費金額低.需要提高其客單價。
一般發展客戶#:最近消費時間較近,消費金額、頻率都不高。
一般維持顧客:最近消費時間較遠,消費頻次高,消費金額不高。
一般挽留客戶:各項指數都不高,可以適當放棄。
以上是Pandas+Pyecharts | 電子產品銷售資料分析視覺化+使用者RFM畫像的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

pandas安裝教學:解析常見安裝錯誤及其解決方法,需要具體程式碼範例引言:Pandas是一個強大的資料分析工具,廣泛應用於資料清洗、資料處理和資料視覺化等方面,因此在資料科學領域備受推崇。然而,由於環境配置和依賴問題,安裝pandas可能會遇到一些困難和錯誤。本文將為大家提供一份pandas安裝教程,並解析一些常見的安裝錯誤及其解決方法。一、安裝pandas

如何使用pandas正確讀取txt文件,需要具體程式碼範例Pandas是一個廣泛使用的Python資料分析函式庫,它可以用來處理各種各樣的資料類型,包括CSV檔案、Excel檔案、SQL資料庫等。同時,它也可以用於讀取文字文件,例如txt文件。但是,在讀取txt檔案時,我們有時會遇到一些問題,例如編碼問題、分隔符號問題等。本文將介紹如何使用pandas正確讀取txt

Pandas是一個強大的資料分析工具,可以輕鬆讀取和處理各種類型的資料檔案。其中,CSV檔案是最常見且常用的資料檔案格式之一。本文將介紹如何使用Pandas讀取CSV檔案並進行資料分析,同時提供具體的程式碼範例。一、導入必要的函式庫首先,我們需要導入Pandas函式庫和其他可能需要的相關函式庫,如下所示:importpandasaspd二、讀取CSV檔使用Pan

python可以透過使用pip、使用conda、從原始碼、使用IDE整合的套件管理工具來安裝pandas。詳細介紹:1、使用pip,在終端機或命令提示字元中執行pip install pandas命令即可安裝pandas;2、使用conda,在終端機或命令提示字元中執行conda install pandas命令即可安裝pandas;3、從原始碼安裝等等。

資料處理利器:Pandas讀取SQL資料庫中的數據,需要具體程式碼範例隨著資料量的不斷增長和複雜性的提高,資料處理成為了現代社會中一個重要的環節。在資料處理過程中,Pandas成為了許多資料分析師和科學家的首選工具之一。本文將介紹如何使用Pandas函式庫來讀取SQL資料庫中的數據,並提供一些具體的程式碼範例。 Pandas是基於Python的一個強大的數據處理和分

python安裝pandas的步驟:1、開啟終端機或指令提示字元;2、輸入「pip install pandas」指令安裝pandas函式庫;3、等待安裝完成,可以在Python腳本中匯入並使用pandas函式庫了;4、使用的是特定的虛擬環境,確保在安裝pandas之前啟動相應的虛擬環境;5、使用的是整合開發環境,可以添加“import pandas as pd”程式碼來導入pandas庫。

使用pandas讀取txt檔案的實用技巧,需要具體程式碼範例在資料分析和資料處理中,txt檔案是一種常見的資料格式。使用pandas讀取txt檔案可以快速、方便地進行資料處理。本文將介紹幾種實用的技巧,以幫助你更好的使用pandas讀取txt文件,並配以具體的程式碼範例。讀取帶有分隔符號的txt檔案使用pandas讀取帶有分隔符號的txt檔案時,可以使用read_c

Pandas去重方法大揭密:快速、有效率的資料去重方式,需要具體程式碼範例在資料分析和處理過程中,經常會遇到資料中存在重複的情況。重複資料可能會對分析結果產生誤導,因此去重是一個非常重要的工作環節。在Pandas這個強大的資料處理庫中,提供了多種方法來實現資料去重,本文將介紹一些常用的去重方法,並附上特定的程式碼範例。基於單列去重最常見的情況是根據某一列的值是否重
