首頁 後端開發 Python教學 20個Python使用小技巧,建議收藏!

20個Python使用小技巧,建議收藏!

Aug 09, 2023 pm 05:42 PM
python


1、易混淆運算

本節將一些Python 易混淆的操作進行比較。

1.1 有放回隨機取樣和無放回隨機取樣

import random
random.choices(seq, k=1)  # 长度为k的list,有放回采样
random.sample(seq, k)     # 长度为k的list,无放回采样
登入後複製

1.2 lambda 函數的參數

func = lambda y: x + y          # x的值在函数运行时被绑定
func = lambda y, x=x: x + y     # x的值在函数定义时被绑定
登入後複製

1.3 copy 和deepcopy

import copy
y = copy.copy(x)      # 只复制最顶层
y = copy.deepcopy(x)  # 复制所有嵌套部分
登入後複製

複製和變數別名結合在一起時,容易混淆:

a = [1, 2, [3, 4]]

# Alias.
b_alias = a  
assert b_alias == a and b_alias is a

# Shallow copy.
b_shallow_copy = a[:]  
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]

# Deep copy.
import copy
b_deep_copy = copy.deepcopy(a)  
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
登入後複製

對別名的修改會影響原變量,(淺)複製中的元素是原始列表中元素的別名,而深層複製是遞歸的進行複製,對深層複製的修改不影響原變數。

2、常用工具

2.1 读写 CSV 文件

import csv
# 无header的读写
with open(name, 'rt', encoding='utf-8', newline='') as f:  # newline=''让Python不将换行统一处理
    for row in csv.reader(f):
        print(row[0], row[1])  # CSV读到的数据都是str类型
with open(name, mode='wt') as f:
    f_csv = csv.writer(f)
    f_csv.writerow(['symbol', 'change'])

# 有header的读写
with open(name, mode='rt', newline='') as f:
    for row in csv.DictReader(f):
        print(row['symbol'], row['change'])
with open(name, mode='wt') as f:
    header = ['symbol', 'change']
    f_csv = csv.DictWriter(f, header)
    f_csv.writeheader()
    f_csv.writerow({'symbol': xx, 'change': xx})
登入後複製

注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决

import sys
csv.field_size_limit(sys.maxsize)
登入後複製

csv 还可以读以 \t 分割的数据

f = csv.reader(f, delimiter='\t')
登入後複製

2.2 迭代器工具

itertools 中定义了很多迭代器工具,例如子序列工具:

import itertools
itertools.islice(iterable, start=None, stop, step=None)
# islice('ABCDEF', 2, None) -> C, D, E, F

itertools.filterfalse(predicate, iterable)         # 过滤掉predicate为False的元素
# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6

itertools.takewhile(predicate, iterable)           # 当predicate为False时停止迭代
# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4

itertools.dropwhile(predicate, iterable)           # 当predicate为False时开始迭代
# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1

itertools.compress(iterable, selectors)            # 根据selectors每个元素是True或False进行选择
# compress(&#39;ABCDEF&#39;, [1, 0, 1, 0, 1, 1]) -> A, C, E, F
登入後複製

序列排序:

sorted(iterable, key=None, reverse=False)

itertools.groupby(iterable, key=None)              # 按值分组,iterable需要先被排序
# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)

itertools.permutations(iterable, r=None)           # 排列,返回值是Tuple
# permutations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC

itertools.combinations(iterable, r=None)           # 组合,返回值是Tuple
itertools.combinations_with_replacement(...)
# combinations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BC, BD, CD
登入後複製

多个序列合并:

itertools.chain(*iterables)                        # 多个序列直接拼接
# chain(&#39;ABC&#39;, &#39;DEF&#39;) -> A, B, C, D, E, F

import heapq
heapq.merge(*iterables, key=None, reverse=False)   # 多个序列按顺序拼接
# merge(&#39;ABF&#39;, &#39;CDE&#39;) -> A, B, C, D, E, F

zip(*iterables)                                    # 当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables, fillvalue=None)  # 当最长的序列耗尽时停止,结果只能被消耗一次
登入後複製

2.3 计数器

计数器可以统计一个可迭代对象中每个元素出现的次数。

import collections
# 创建
collections.Counter(iterable)

# 频次
collections.Counter[key]                 # key出现频次
# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)

# 插入/更新
collections.Counter.update(iterable)
counter1 + counter2; counter1 - counter2  # counter加减

# 检查两个字符串的组成元素是否相同
collections.Counter(list1) == collections.Counter(list2)
登入後複製

2.4 带默认值的 Dict

当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。

import collections
collections.defaultdict(type)  # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
登入後複製

2.5 有序 Dict

import collections
collections.OrderedDict(items=None)  # 迭代时保留原始插入顺序
登入後複製

3、高性能编程和调试

3.1 输出错误和警告信息

向标准错误输出信息

import sys
sys.stderr.write(&#39;&#39;)
登入後複製

输出警告信息

import warnings
warnings.warn(message, category=UserWarning)  
# category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
登入後複製

控制警告消息的输出

$ python -W all     # 输出所有警告,等同于设置warnings.simplefilter(&#39;always&#39;)
$ python -W ignore  # 忽略所有警告,等同于设置warnings.simplefilter(&#39;ignore&#39;)
$ python -W error   # 将所有警告转换为异常,等同于设置warnings.simplefilter(&#39;error&#39;)
登入後複製

3.2 代码中测试

有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:

# 在代码中的debug部分
if __debug__:
    pass
登入後複製

一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:

$ python -0 main.py
登入後複製

3.3 代码风格检查

使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误

pylint main.py
登入後複製

3.4 代码耗时

耗时测试

$ python -m cProfile main.py
登入後複製

测试某代码块耗时

# 代码块耗时定义
from contextlib import contextmanager
from time import perf_counter

@contextmanager
def timeblock(label):
    tic = perf_counter()
    try:
        yield
    finally:
        toc = perf_counter()
        print(&#39;%s : %s&#39; % (label, toc - tic))

# 代码块耗时测试
with timeblock(&#39;counting&#39;):
    pass
登入後複製

代码耗时优化的一些原则

  • 專注於最佳化產生效能瓶頸的地方,而不是全部程式碼。
  • 避免使用全域變數。局部變數的查找比全域變數更快,將全域變數的程式碼定義在函數中運行通常會快 15%-30%。
  • 避免使用。存取屬性。使用 from module import name 會更快,將頻繁存取的類別的成員變數 self.member 放入到一個局部變數中。
  • 盡量使用內建資料結構。 str, list, set, dict 等使用 C 實現,運行起來很快。
  • 避免創建沒有必要的中間變量,和 copy.deepcopy()。
  • 字串拼接,例如a ':' b ':' c 會創造大量無用的中間變量,':',join([a, b , c]) 效率會高不少。另外需要考慮字串拼接是否必要,例如 print(':'.join([a, b, c])) 效率比 print(a, b, c, sep=':') 低。
#

以上是20個Python使用小技巧,建議收藏!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

vscode怎麼在終端運行程序 vscode怎麼在終端運行程序 Apr 15, 2025 pm 06:42 PM

在 VS Code 中,可以通過以下步驟在終端運行程序:準備代碼和打開集成終端確保代碼目錄與終端工作目錄一致根據編程語言選擇運行命令(如 Python 的 python your_file_name.py)檢查是否成功運行並解決錯誤利用調試器提升調試效率

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles