首頁 > 後端開發 > Python教學 > 4000字詳細說明,推薦20個好用到爆的Pandas函數方法

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

發布: 2023-08-10 14:52:50
轉載
1314 人瀏覽過

#今天分享幾個不為人知的 pandas函數,大家可能平常看到的不多,但是使用起來倒是非常的方便,也能夠幫助我們數據分析人員大幅度地提高工作效率,同時也希望大家看完之後能夠有所收穫

  • items()方法
  • #iterrows()方法
  • insert()方法
  • assign()方法
  • eval()方法
  • pop()方法
  • ##truncate()方法
  • count()方法
  • add_prefix()方法/add_suffix ()方法
  • clip()方法
  • filter()方法
  • first()方法
  • isin()方法
  • df.plot.area()方法
  • #df.plot.bar()方法
  • df.plot.box()方法
  • #df.plot.pie()方法

items()方法

#pandas當中的items()方法可以用來遍歷數據集當中的每一列,同時傳回列名以及每一列當中的內容,透過以元組的形式,範例如下
df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'],
                  'population': [1864, 22000, 80000]},
                  index=['panda', 'polar', 'koala'])
df
登入後複製

output

         species  population
panda       bear        1864
polar       bear       22000
koala  marsupial       80000
登入後複製

然後我們使用items() 方法

for label, content in df.items():
    print(f'label: {label}')
    print(f'content: {content}', sep='\n')
    print("=" * 50)
登入後複製

output

label: species
content: panda         bear
polar         bear
koala    marsupial
Name: species, dtype: object
==================================================
label: population
content: panda     1864
polar    22000
koala    80000
Name: population, dtype: int64
==================================================
登入後複製

相繼的列印出了'species'和'population'這兩列的列名和對應的內容

#iterrows()方法

而對於iterrows()方法而言,其功能則是遍歷資料集當中的每一行,傳回每一行的索引以及帶有列名的每一行的內容,範例如下
for label, content in df.iterrows():
    print(f'label: {label}')
    print(f'content: {content}', sep='\n')
    print("=" * 50)
登入後複製

output

#
label: panda
content: species       bear
population    1864
Name: panda, dtype: object
==================================================
label: polar
content: species        bear
population    22000
Name: polar, dtype: object
==================================================
label: koala
content: species       marsupial
population        80000
Name: koala, dtype: object
==================================================
登入後複製

insert()方法

insert()方法主要是用于在数据集当中的特定位置处插入数据,示例如下

df.insert(1, "size", [2000, 3000, 4000])
登入後複製

output

         species  size  population
panda       bear  2000        1864
polar       bear  3000       22000
koala  marsupial  4000       80000
登入後複製

可见在DataFrame数据集当中,列的索引也是从0开始的

assign()方法

assign()方法可以用来在数据集当中添加新的列,示例如下

df.assign(size_1=lambda x: x.population * 9 / 5 + 32)
登入後複製

output

         species  population    size_1
panda       bear        1864    3387.2
polar       bear       22000   39632.0
koala  marsupial       80000  144032.0
登入後複製
从上面的例子中可以看出,我们通过一个lambda匿名函数,在数据集当中添加一个新的列,命名为‘size_1’,当然我们也可以通过assign()方法来创建不止一个列
df.assign(size_1 = lambda x: x.population * 9 / 5 + 32,
          size_2 = lambda x: x.population * 8 / 5 + 10)
登入後複製

output

         species  population    size_1    size_2
panda       bear        1864    3387.2    2992.4
polar       bear       22000   39632.0   35210.0
koala  marsupial       80000  144032.0  128010.0
登入後複製

eval()方法

eval()方法主要是用来执行用字符串来表示的运算过程的,例如

df.eval("size_3 = size_1 + size_2")
登入後複製

output

         species  population    size_1    size_2    size_3
panda       bear        1864    3387.2    2992.4    6379.6
polar       bear       22000   39632.0   35210.0   74842.0
koala  marsupial       80000  144032.0  128010.0  272042.0
登入後複製

当然我们也可以同时对执行多个运算过程

df = df.eval('''
size_3 = size_1 + size_2
size_4 = size_1 - size_2
''')
登入後複製

output

         species  population    size_1    size_2    size_3   size_4
panda       bear        1864    3387.2    2992.4    6379.6    394.8
polar       bear       22000   39632.0   35210.0   74842.0   4422.0
koala  marsupial       80000  144032.0  128010.0  272042.0  16022.0
登入後複製

pop()方法

pop()方法主要是用来删除掉数据集中特定的某一列数据

df.pop("size_3")
登入後複製

output

panda      6379.6
polar     74842.0
koala    272042.0
Name: size_3, dtype: float64
登入後複製

而原先的数据集当中就没有这个‘size_3’这一例的数据了

truncate()方法

truncate()方法主要是根据行索引来筛选指定行的数据的,示例如下

df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'],
                   'B': ['f', 'g', 'h', 'i', 'j'],
                   'C': ['k', 'l', 'm', 'n', 'o']},
                  index=[1, 2, 3, 4, 5])
登入後複製

output

   A  B  C
1  a  f  k
2  b  g  l
3  c  h  m
4  d  i  n
5  e  j  o
登入後複製

我们使用truncate()方法来做一下尝试

df.truncate(before=2, after=4)
登入後複製

output

   A  B  C
2  b  g  l
3  c  h  m
4  d  i  n
登入後複製
我们看到参数beforeafter存在于truncate()方法中,目的就是把行索引2之前和行索引4之后的数据排除在外,筛选出剩余的数据

count()方法

count()方法主要是用来计算某一列当中非空值的个数,示例如下

df = pd.DataFrame({"Name": ["John", "Myla", "Lewis", "John", "John"],
                   "Age": [24., np.nan, 25, 33, 26],
                   "Single": [True, True, np.nan, True, False]})
登入後複製

output

    Name   Age Single
0   John  24.0   True
1   Myla   NaN   True
2  Lewis  25.0    NaN
3   John  33.0   True
4   John  26.0  False
登入後複製

我们使用count()方法来计算一下数据集当中非空值的个数

df.count()
登入後複製

output

Name      5
Age       4
Single    4
dtype: int64
登入後複製

add_prefix()方法/add_suffix()方法

add_prefix()方法和add_suffix()方法分别会给列名以及行索引添加后缀和前缀,对于Series()数据集而言,前缀与后缀是添加在行索引处,而对于DataFrame()数据集而言,前缀与后缀是添加在列索引处,示例如下
s = pd.Series([1, 2, 3, 4])
登入後複製

output

0    1
1    2
2    3
3    4
dtype: int64
登入後複製

我们使用add_prefix()方法与add_suffix()方法在Series()数据集上

s.add_prefix('row_')
登入後複製

output

row_0    1
row_1    2
row_2    3
row_3    4
dtype: int64
登入後複製

又例如

s.add_suffix('_row')
登入後複製

output

0_row    1
1_row    2
2_row    3
3_row    4
dtype: int64
登入後複製
而对于DataFrame()形式数据集而言,add_prefix()方法以及add_suffix()方法是将前缀与后缀添加在列索引处的
df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]})
登入後複製

output

   A  B
0  1  3
1  2  4
2  3  5
3  4  6
登入後複製

示例如下

df.add_prefix("column_")
登入後複製

output

   column_A  column_B
0         1         3
1         2         4
2         3         5
3         4         6
登入後複製

又例如

df.add_suffix("_column")
登入後複製

output

   A_column  B_column
0         1         3
1         2         4
2         3         5
3         4         6
登入後複製

clip()方法

clip()方法主要是通过设置阈值来改变数据集当中的数值,当数值超过阈值的时候,就做出相应的调整
data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]}
df = pd.DataFrame(data)
登入後複製

output

df.clip(lower = -4, upper = 4)
登入後複製

output

   col_0  col_1
0      4     -2
1     -3     -4
2      0      4
3     -1      4
4      4     -4
登入後複製
我们看到参数lowerupper分别代表阈值的上限与下限,数据集当中超过上限与下限的值会被替代。

filter()方法

pandas当中的filter()方法是用来筛选出特定范围的数据的,示例如下

df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])),
                  index=['A', 'B', 'C', 'D'],
                  columns=['one', 'two', 'three'])
登入後複製

output

   one  two  three
A    1    2      3
B    4    5      6
C    7    8      9
D   10   11     12
登入後複製

我们使用filter()方法来筛选数据

df.filter(items=['one', 'three'])
登入後複製

output

   one  three
A    1      3
B    4      6
C    7      9
D   10     12
登入後複製
登入後複製

我们还可以使用正则表达式来筛选数据

df.filter(regex='e$', axis=1)
登入後複製

output

   one  three
A    1      3
B    4      6
C    7      9
D   10     12
登入後複製
登入後複製

当然通过参数axis来调整筛选行方向或者是列方向的数据

df.filter(like='B', axis=0)
登入後複製

output

   one  two  three
B    4    5      6
登入後複製

first()方法

当数据集当中的行索引是日期的时候,可以通过该方法来筛选前面几行的数据

index_1 = pd.date_range('2021-11-11', periods=5, freq='2D')
ts = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=index_1)
ts
登入後複製

output

            A
2021-11-11  1
2021-11-13  2
2021-11-15  3
2021-11-17  4
2021-11-19  5
登入後複製

我们使用first()方法来进行一些操作,例如筛选出前面3天的数据

ts.first('3D')
登入後複製

output

            A
2021-11-11  1
2021-11-13  2
登入後複製

isin()方法

isin()方法主要是用来确认数据集当中的数值是否被包含在给定的列表当中

df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12])),
                  index=['A', 'B', 'C', 'D'],
                  columns=['one', 'two', 'three'])
df.isin([3, 5, 12])
登入後複製

output

     one    two  three
A  False  False   True
B  False   True  False
C  False  False  False
D  False  False   True
登入後複製
若是数值被包含在列表当中了,也就是3、5、12当中,返回的是True,否则就返回False

df.plot.area()方法

下面我们来讲一下如何在Pandas当中通过一行代码来绘制图表,将所有的列都通过面积图的方式来绘制
df = pd.DataFrame({
    'sales': [30, 20, 38, 95, 106, 65],
    'signups': [7, 9, 6, 12, 18, 13],
    'visits': [20, 42, 28, 62, 81, 50],
}, index=pd.date_range(start='2021/01/01', end='2021/07/01', freq='M'))

ax = df.plot.area(figsize = (10, 5))
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.bar()方法

下面我们看一下如何通过一行代码来绘制柱状图

df = pd.DataFrame({'label':['A', 'B', 'C', 'D'], 'values':[10, 30, 50, 70]})
ax = df.plot.bar(x='label', y='values', rot=20)
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

当然我们也可以根据不同的类别来绘制柱状图

age = [0.1, 17.5, 40, 48, 52, 69, 88]
weight = [2, 8, 70, 1.5, 25, 12, 28]
index = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
df = pd.DataFrame({'age': age, 'weight': weight}, index=index)
ax = df.plot.bar(rot=0)
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

当然我们也可以横向来绘制图表

ax = df.plot.barh(rot=0)
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.box()方法

我们来看一下箱型图的具体的绘制,通过pandas一行代码来实现

data = np.random.randn(25, 3)
df = pd.DataFrame(data, columns=list('ABC'))
ax = df.plot.box()
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

df.plot.pie()方法

接下来是饼图的绘制

df = pd.DataFrame({'mass': [1.33, 4.87 , 5.97],
                   'radius': [2439.7, 6051.8, 6378.1]},
                  index=['Mercury', 'Venus', 'Earth'])
plot = df.plot.pie(y='mass', figsize=(8, 8))
登入後複製

output

4000字詳細說明,推薦20個好用到爆的Pandas函數方法

除此之外,还有折线图、直方图、散点图等等,步骤与方式都与上述的技巧有异曲同工之妙,大家感兴趣的可以自己另外去尝试。

以上是4000字詳細說明,推薦20個好用到爆的Pandas函數方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:Python当打之年
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板