In this article, we're going to delve into an intriguing problem from the realm of combinatorics and string processing: "Counting distinct regio bracket sequences which are not N perdicm. involves generating distinct valid bracket sequences and then filtering out sequences that are N-periodic. We'll discuss the problem, provide a C code implementation of a brute-force approach, and expexp a# testase.
Understanding the Problem StatementA regular bracket sequence is a string that can be transformed into a correct arithmetic expression by inserting characters '1' and ' ' between the original characters. For example, the sequence ""())" (" and "(()" are not.
方法
We will use a recursive function to generate all possible bracket sequences of length 2N. While generating the sequences, we'll keep track of two important parameters: the balance of the brackets, openets brackets the number of closed brackets) and the number of open brackets (should not exceed N).
為了篩選出N週期序列,我們將檢查每個產生的序列。如果該序列是長度為N的較小序列的重複,我們將從計數中排除它。
C Implementation
Example
#include <bits/stdc++.h> using namespace std; // Function to check if string is N periodic bool isPeriodic(string s, int N) { string sub = s.substr(0, N); for (int i = N; i < s.size(); i += N) { if (sub != s.substr(i, N)) return false; } return true; } // Function to generate all bracket sequences void generateBrackets(string s, int open, int close, int N, int &count) { // If sequence is complete if (s.size() == 2*N) { if (!isPeriodic(s, N)) count++; return; } // Add an open bracket if we have some left if (open < N) generateBrackets(s + "(", open + 1, close, N, count); // Add a close bracket if it doesn't make the sequence invalid if (close < open) generateBrackets(s + ")", open, close + 1, N, count); } int main() { int N = 3; int count = 0; generateBrackets("", 0, 0, N, count); cout << "Count of sequences: " << count; return 0; }
Count of sequences: 5
Conclusion
以上是計算不是N週期的不同正常括號序列的數量的詳細內容。更多資訊請關注PHP中文網其他相關文章!