方程式 x = b*(sumofdigits(x) ^ a)+c 的整數解的數量
假設給定三個整數 a、b 和 c,並且有一個方程式 x = b* (sumofdigits(x)^a) c。 這裡, sumofdigits(x ) 是x中所有數字的總和。為了找到滿足方程式的所有可能的積分解,我們將探索 C 中的各種方法。
輸入輸出場景
下面給出的是 a、b 和 c 的值。滿足方程式 x = b* (sumofdigits(x)^a) c 的不同積分解作為輸出給出。
Input: a = 2, b = 2, c = -3 Output: 125, 447, 575
在上述情況中,a的值為2,b的值為2,c的值為-3,而x的可能值為125、447和575。
考慮數字125,其各位數字和為8,如果將這個值代入方程式b*(sum(x)^a) c,答案為125,與x相等。因此,它是方程式的一個可能解。
注意- 此方程式的積分解在 1 到 109 範圍內。
使用遞迴
我們可以使用遞歸搜尋來找到給定方程式的積分解。
我們需要建立一個名為sumOfDigits()的函數,用於計算任何給定數字N的數字總和。
使用模運算子和除運算子迭代N 的數字。
模運算子用於提取N的最後一位數字。
在每次迭代後,將儲存在變數 sum 中的數字逐一相加。
我們建立一個integralSolutions()函數來計算積分解。
它使用sumOfDigits函數計算x的數字總和。
接下來,使用 for 迴圈我們將總和求 a 次方。
我們透過將b乘以power並加上c來評估方程式的右邊。
如果x的值等於右邊的值,則視為一個整數解。
接下來,我們有遞歸函數來搜尋指定範圍內的積分解。
範例
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; // addition of the last digit of N N /= 10; } return sum; } void integralSolutions(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int j = 0; j < a; j++) { power *= sum; } int rightHandSide = b * power + c; if (x == rightHandSide) { std::cout << "Integral solution: " << x << std::endl; } } void recursion(int start, int end, int a, int b, int c) { if (start > end) { return; } integralSolutions(start, a, b, c); recursion(start + 1, end, a, b, c); } int main() { int a = 1, b = 3, c = 5; recursion(1, 100000, a, b, c); return 0; }
輸出
Integral solution: 11 Integral solution: 38
分段錯誤 當遞迴搜尋中指定範圍的結束值超過100000時,會出現此錯誤。因此,您不能有超過該值的x值。
使用簡單迭代
如果你想要大於100000的x的整數解,那我們不使用遞迴。在這裡,我們將使用從1到109的x的簡單迭代,並將其與方程式的右側值進行比較。
範例
#include <iostream> using namespace std; int sumOfDigits(int N) { int sum = 0; while (N != 0) { sum += N % 10; N /= 10; } return sum; } bool integralSolution(int x, int a, int b, int c) { int sum = sumOfDigits(x); int power = 1; for (int i = 0; i < a; i++) { power *= sum; } int rightHandSide = b * power + c; return x == rightHandSide; } int main() { int a = 3, b = 5, c = 8; // x ranges from 1 to 109 for (int x = 1; x <= 1000000000; x++) { if (integralSolution(x, a, b, c)) { std::cout << "Integral solution: " << x << std::endl; } } return 0; }
輸出
Integral solution: 53248 Integral solution: 148963
結論
我們探討了尋找方程式 x = b* (sumofdigits(x)^a) c 積分解的方法,其中包括使用遞歸或簡單迭代。遞歸方法可讓您靈活地指定解的範圍。但是,它增加了時間複雜度,並且可能會顯示較大範圍值的分段錯誤,從而導致堆疊溢位。
迭代方法在時間複雜度和記憶體使用方面都很有效率。然而,它提供的靈活性有限且程式碼更複雜。因此,這兩種方法都有各自的優點和缺點。根據您的需求,您可以選擇任何一種方法。
以上是方程式 x = b*(sumofdigits(x) ^ a)+c 的整數解的數量的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

C語言數據結構:樹和圖的數據表示與操作樹是一個層次結構的數據結構由節點組成,每個節點包含一個數據元素和指向其子節點的指針二叉樹是一種特殊類型的樹,其中每個節點最多有兩個子節點數據表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作創建樹遍歷樹(先序、中序、後序)搜索樹插入節點刪除節點圖是一個集合的數據結構,其中的元素是頂點,它們通過邊連接在一起邊可以是帶權或無權的數據表示鄰

文件操作難題的真相:文件打開失敗:權限不足、路徑錯誤、文件被佔用。數據寫入失敗:緩衝區已滿、文件不可寫、磁盤空間不足。其他常見問題:文件遍歷緩慢、文本文件編碼不正確、二進製文件讀取錯誤。

C語言函數是代碼模塊化和程序搭建的基礎。它們由聲明(函數頭)和定義(函數體)組成。 C語言默認使用值傳遞參數,但也可使用地址傳遞修改外部變量。函數可以有返回值或無返回值,返回值類型必須與聲明一致。函數命名應清晰易懂,使用駝峰或下劃線命名法。遵循單一職責原則,保持函數簡潔性,以提高可維護性和可讀性。

C語言函數名定義包括:返回值類型、函數名、參數列表和函數體。函數名應清晰、簡潔、統一風格,避免與關鍵字衝突。函數名具有作用域,可在聲明後使用。函數指針允許將函數作為參數傳遞或賦值。常見錯誤包括命名衝突、參數類型不匹配和未聲明的函數。性能優化重點在函數設計和實現上,而清晰、易讀的代碼至關重要。

C35 的計算本質上是組合數學,代表從 5 個元素中選擇 3 個的組合數,其計算公式為 C53 = 5! / (3! * 2!),可通過循環避免直接計算階乘以提高效率和避免溢出。另外,理解組合的本質和掌握高效的計算方法對於解決概率統計、密碼學、算法設計等領域的許多問題至關重要。

C語言函數是可重複利用的代碼塊,它接收輸入,執行操作,返回結果,可將代碼模塊化提高可複用性,降低複雜度。函數內部機制包含參數傳遞、函數執行、返回值,整個過程涉及優化如函數內聯。編寫好的函數遵循單一職責原則、參數數量少、命名規範、錯誤處理。指針與函數結合能實現更強大的功能,如修改外部變量值。函數指針將函數作為參數傳遞或存儲地址,用於實現動態調用函數。理解函數特性和技巧是編寫高效、可維護、易理解的C語言程序的關鍵。

算法是解決問題的指令集,其執行速度和內存佔用各不相同。編程中,許多算法都基於數據搜索和排序。本文將介紹幾種數據檢索和排序算法。線性搜索假設有一個數組[20,500,10,5,100,1,50],需要查找數字50。線性搜索算法會逐個檢查數組中的每個元素,直到找到目標值或遍歷完整個數組。算法流程圖如下:線性搜索的偽代碼如下:檢查每個元素:如果找到目標值:返回true返回falseC語言實現:#include#includeintmain(void){i

C語言多線程編程指南:創建線程:使用pthread_create()函數,指定線程ID、屬性和線程函數。線程同步:通過互斥鎖、信號量和條件變量防止數據競爭。實戰案例:使用多線程計算斐波那契數,將任務分配給多個線程並同步結果。疑難解答:解決程序崩潰、線程停止響應和性能瓶頸等問題。
