我們知道二分搜尋演算法比線性搜尋演算法更好。此演算法執行所需的時間為O(log n)。儘管大多數情況下,實現的程式碼存在一些問題。讓我們來考慮一個二分搜尋演算法函數,如下所示 −
int binarySearch(int array[], int start, int end, int key){ if(start <= end){ int mid = (start + end) /2); //mid location of the list if(array[mid] == key) return mid; if(array[mid] > key) return binarySearch(array, start, mid-1, key); return binarySearch(array, mid+1, end, key); } return -1; }
這個演算法在開始和結束達到一個較大的數之前都能正常運作。如果 (開始 結束) 超過了 232 - 1 的值,那麼在包裝後可能會傳回一個負數。由於負數不支援作為數組索引,所以可能會引起一些問題。
為了解決這個問題,有幾種不同的方法。
int mid = start + ((end - start) / 2)
第二種方法只適用於Java,因為C或C 沒有>>>運算子。
int mid = (start + end) >>> 1
由於C或C 不支援>>>,我們可以使用下列方法。
int mid = ((unsigned int) low + (unsigned int) high) >> 1
以上是許多二分查找實作中的一個問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!