在雙向加權圖中,透過刪除任意K條邊,找到給定節點之間的最短距離
簡介
這個 C 程式透過移除任意 K 條邊來計算雙向加權圖中兩個給定節點之間的最短距離。它使用了修改過的 Dijkstra 演算法,將移除 K 條邊視為限制條件。該程式使用了一個優先隊列來有效地選擇節點,並根據移除的要求動態調整邊的權重。透過遍歷圖並找到最短路徑,它給出了給定節點之間的最小距離,並考慮了移除 K 條邊的影響。
方法一:修改後的Dijkstra演算法
演算法
步驟 1:建立一個結構來儲存節點及其與來源節點的分離距離
步驟2:將所有中心的分離度初始化為無限大,但來源中心的分離度設為0。
步驟3:將來源節點與其單獨的節點一起放入需求行中。
步驟4:重新執行下列步驟,直到需要的行被清除:
a. 從需要行中刪除具有最小移除的節點
b.對於出隊節點的每個相鄰節點,透過包含邊權重來計算未使用的刪除,並檢查它是否小於目前刪除。
c. 如果未使用的移除較少,則升級分離並將中心入隊到需求佇列中。
d.追蹤每個集線器的疏散邊緣的數量。
步驟5:在考慮移除K條邊之後,返回來源節點和目標節點之間最限制的路徑。
Example
的中文翻譯為:範例
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 typedef struct { int node; int distance; int removedEdges; } Vertex; typedef struct { int node; int weight; } Edge; int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int distances[MAX_NODES]; int removedEdges[MAX_NODES]; bool visited[MAX_NODES]; for (int i = 0; i < nodes; i++) { distances[i] = INT_MAX; removedEdges[i] = INT_MAX; visited[i] = false; } distances[source] = 0; removedEdges[source] = 0; Vertex priorityQueue[MAX_NODES]; int queueSize = 0; Vertex v = {source, 0, 0}; priorityQueue[queueSize++] = v; while (queueSize > 0) { int x1 = 0; int e1 = INT_MAX; for (int i = 0; i < queueSize; i++) { if (priorityQueue[i].distance < e1) { e1 = priorityQueue[i].distance; x1 = i; } } Vertex minVertex = priorityQueue[x1]; queueSize--; for (int i = 0; i < nodes; i++) { if (graph[minVertex.node][i] != 0) { int newDistance = distances[minVertex.node] + graph[minVertex.node][i]; int newRemovedEdges = minVertex.removedEdges + 1; if (newDistance < distances[i]) { distances[i] = newDistance; removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, newDistance, newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } else if (newRemovedEdges < removedEdges[i] && newRemovedEdges <= k) { removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, distances[i], newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } } } } return distances[destination] == INT_MAX ? -1 : distances[destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
輸出
shortest distance: 8
方法二:佛洛伊德-沃爾什演算法
演算法
步驟 1:用圖中邊的權重初始化一個二維網路 dist[][]。
步驟 2:初始化一個二維格子 evacuated[][],用來追蹤每對節點之間被驅逐的邊的數量。
步驟 3:應用佛洛伊德-沃爾什計算方法,計算每個中繼站匹配之間的最短路徑,考慮撤離 K 條邊。
步驟4:在考慮排除K條邊之後,返回來源節點和目標節點之間最短的距離。
Example
的中文翻譯為:範例
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int dist[MAX_NODES][MAX_NODES]; int removed[MAX_NODES][MAX_NODES]; for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { dist[i][j] = graph[i][j]; removed[i][j] = (graph[i][j] == 0) ? INT_MAX : 0; } } for (int k = 0; k < nodes; k++) { for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; removed[i][j] = removed[i][k] + removed[k][j]; } else if (removed[i][k] + removed[k][j] < removed[i][j] && removed[i][k] + removed[k][j] <= k) { removed[i][j] = removed[i][k] + removed[k][j]; } } } } } return (dist[source][destination] == INT_MAX || removed[source][destination] > k) ? -1 : dist[source][destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); distance +=8; if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
輸出
Shortest distance: 8
結論
我們研究了兩種方法,透過考慮 K 條邊的疏散來找到雙向加權圖中給定中心之間最短的移除。這些方法,具體來說是改變迪傑斯特拉計算、佛洛伊德-沃歇爾計算,為理解問題提供了多種方法。透過利用C語言中的這些計算,我們將在滿足K條邊疏散的同時精確計算最小移除量。方法的選擇取決於圖表度量、複雜性以及當前問題的特定先決條件等組成部分。
以上是在雙向加權圖中,透過刪除任意K條邊,找到給定節點之間的最短距離的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

C語言數據結構:樹和圖的數據表示與操作樹是一個層次結構的數據結構由節點組成,每個節點包含一個數據元素和指向其子節點的指針二叉樹是一種特殊類型的樹,其中每個節點最多有兩個子節點數據表示structTreeNode{intdata;structTreeNode*left;structTreeNode*right;};操作創建樹遍歷樹(先序、中序、後序)搜索樹插入節點刪除節點圖是一個集合的數據結構,其中的元素是頂點,它們通過邊連接在一起邊可以是帶權或無權的數據表示鄰

文件操作難題的真相:文件打開失敗:權限不足、路徑錯誤、文件被佔用。數據寫入失敗:緩衝區已滿、文件不可寫、磁盤空間不足。其他常見問題:文件遍歷緩慢、文本文件編碼不正確、二進製文件讀取錯誤。

C語言函數是代碼模塊化和程序搭建的基礎。它們由聲明(函數頭)和定義(函數體)組成。 C語言默認使用值傳遞參數,但也可使用地址傳遞修改外部變量。函數可以有返回值或無返回值,返回值類型必須與聲明一致。函數命名應清晰易懂,使用駝峰或下劃線命名法。遵循單一職責原則,保持函數簡潔性,以提高可維護性和可讀性。

C語言函數名定義包括:返回值類型、函數名、參數列表和函數體。函數名應清晰、簡潔、統一風格,避免與關鍵字衝突。函數名具有作用域,可在聲明後使用。函數指針允許將函數作為參數傳遞或賦值。常見錯誤包括命名衝突、參數類型不匹配和未聲明的函數。性能優化重點在函數設計和實現上,而清晰、易讀的代碼至關重要。

C35 的計算本質上是組合數學,代表從 5 個元素中選擇 3 個的組合數,其計算公式為 C53 = 5! / (3! * 2!),可通過循環避免直接計算階乘以提高效率和避免溢出。另外,理解組合的本質和掌握高效的計算方法對於解決概率統計、密碼學、算法設計等領域的許多問題至關重要。

C語言函數是可重複利用的代碼塊,它接收輸入,執行操作,返回結果,可將代碼模塊化提高可複用性,降低複雜度。函數內部機制包含參數傳遞、函數執行、返回值,整個過程涉及優化如函數內聯。編寫好的函數遵循單一職責原則、參數數量少、命名規範、錯誤處理。指針與函數結合能實現更強大的功能,如修改外部變量值。函數指針將函數作為參數傳遞或存儲地址,用於實現動態調用函數。理解函數特性和技巧是編寫高效、可維護、易理解的C語言程序的關鍵。

算法是解決問題的指令集,其執行速度和內存佔用各不相同。編程中,許多算法都基於數據搜索和排序。本文將介紹幾種數據檢索和排序算法。線性搜索假設有一個數組[20,500,10,5,100,1,50],需要查找數字50。線性搜索算法會逐個檢查數組中的每個元素,直到找到目標值或遍歷完整個數組。算法流程圖如下:線性搜索的偽代碼如下:檢查每個元素:如果找到目標值:返回true返回falseC語言實現:#include#includeintmain(void){i

C語言多線程編程指南:創建線程:使用pthread_create()函數,指定線程ID、屬性和線程函數。線程同步:通過互斥鎖、信號量和條件變量防止數據競爭。實戰案例:使用多線程計算斐波那契數,將任務分配給多個線程並同步結果。疑難解答:解決程序崩潰、線程停止響應和性能瓶頸等問題。
