新標題:TextDiffuser:無懼圖像中的文字,提供更高品質的文字渲染
在過去幾年中,Text-to-Image 領域取得了巨大的進展,特別是在人工智慧生成內容(AIGC)的時代。隨著DALL-E模型的興起,學術界湧現出越來越多的Text-to-Image模型,例如Imagen、Stable Diffusion、ControlNet等模型。然而,儘管Text-to-Image領域發展迅速,現有模型在穩定地產生包含文字的圖像方面仍然面臨一些挑戰
嘗試過現有sota 文生圖模型可以發現,模型生成的文字部分基本上是不可讀的,類似於亂碼,這非常影響圖像的整體美觀。
現有的sota文字產生模型產生的文字資訊可讀性較差
經過調查,學術界在這方面的研究較少。事實上,包含文字的圖像在日常生活中十分常見,例如海報、書籍封面和路牌等。如果 AI 能夠有效地產生這類圖像,將有助於輔助設計師的工作,激發設計靈感,並減輕設計負擔。除此之外,使用者可能只希望修改文生圖模型結果的文字部分,保留其他非文字區域的結果。
為了不改變原始意思,需要將內容改寫成中文。不需要出現原句
- #論文網址:https://arxiv.org/abs/2305.10855
- 專案位址:https://jingyechen.github.io/textdiffuser/
- 程式碼位址: https://github.com/microsoft/unilm/tree/master/textdiffuser
- #Demo位址:https://huggingface.co/spaces/microsoft/ TextDiffuser
#TextDiffuser 的三個功能
##本文提出了TextDiffuser 模型,該模型包含兩個階段,第一階段產生Layout,第二階段產生影像。
#需要重新寫的是:TextDiffuser框架圖
模型接受一段文字Prompt ,然後根據Prompt 中的關鍵字確定每個關鍵字的Layout(也就是座標框)。研究者採用了 Layout Transformer,使用編碼器-解碼器的形式自回歸地輸出關鍵字的座標框,並以 Python 的 PILLOW 函式庫渲染出文字。在這個過程中,也可以利用 Pillow 現成的 API 得到每個字元的座標框,相當於得到了字元層級的 Box-level segmentation mask。基於此信息,研究者嘗試微調 Stable Diffusion。
他們考慮了兩種情況,一種是使用者想直接產生整張圖片(稱為 Whole-Image Generation)。另一種情況是 Part-Image Generation,在論文中也稱之為 Text-inpainting,指的是使用者給定一張圖像,需要修改圖裡的某些文字區域。
為了實現上述兩個目標,研究人員重新設計了輸入特徵,將維度從原來的4維度增加到了17維。其中包括4維加雜訊影像特徵、8維字元資訊、1維影像遮罩以及4維未遮罩的影像特徵。如果是整體影像生成,研究人員將遮罩區域設為整個影像;反之,如果是部分影像生成,只需對影像的一部分進行遮罩。擴散模型的訓練過程類似於LDM,對此感興趣的同伴可以參考原文中的方法部分描述
#在推理階段,TextDiffuser具有非常靈活的使用方式,可以分為三種:
- 根據使用者給定的指令產生圖像。而且,如果使用者不大滿意第一步 Layout Generation 產生的佈局,使用者可以更改座標也可以更改文字的內容,這增加了模型的可控性。
- 直接從第二個階段開始。根據模板圖像產生最終結果,其中模板圖像可以是印刷文字圖像,手寫文字圖像,場景文字圖像。研究者專門訓練了一個字元集分割網路用於從模板影像中提取 Layout。
- 同樣也是從第二個階段開始,使用者給定圖像並指定需要修改的區域與文字內容。並且,這個操作可以多次進行,直到使用者對產生的結果感到滿意為止。
所建構的MARIO 資料
為了訓練TextDiffuser,研究人員收集了一千萬張文字影像,如上圖所示,包括三個子集:MARIO-LAION,MARIO-TMDB和MARIO-OpenLibrary
研究者在篩選資料時考慮了若干方面:例如圖像經過OCR 後,只保留文字數量為[1,8] 的圖像。他們篩選了文本數量超過 8 的文本,因為這些文本往往包含大量密集文本,OCR 的結果一般不太準確,例如報紙或複雜的設計圖紙。除此之外,他們設定文字的區域大於 10%,設定這個規則是為了讓文字區域在圖像的比重不要太小。
在 MARIO-10M 資料集進行訓練後,研究人員對 TextDiffuser 進行了定量和定性的比較,與現有方法進行了對比。例如,在整體圖像生成任務中,本文方法生成的圖像具有更清晰可讀的文本,並且文本區域與背景區域的融合更好,如下圖所示
與現有工作比較文字渲染效能
研究人員也進行了一系列質性實驗,結果如表1所示。評估指標包括FID、CLIPScore和OCR。特別是OCR指標,本研究方法相對於對比方法有顯著的提升
重寫後的內容:實驗結果見表1:定性實驗
對於Part-Image Generation 任務,研究者嘗試在給定的圖像上增加或修改字符,實驗結果表明TextDiffuser 生成的結果很自然。
文字修復功能視覺化
總的來說,本文提出的TextDiffuser 模型在文字渲染領域取得了顯著的進展,能夠產生包含易讀文字的高品質影像。未來,研究者將進一步提升 TextDiffuser 的效果。
以上是新標題:TextDiffuser:無懼圖像中的文字,提供更高品質的文字渲染的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DMA在C 中是指DirectMemoryAccess,直接內存訪問技術,允許硬件設備直接與內存進行數據傳輸,不需要CPU干預。 1)DMA操作高度依賴於硬件設備和驅動程序,實現方式因係統而異。 2)直接訪問內存可能帶來安全風險,需確保代碼的正確性和安全性。 3)DMA可提高性能,但使用不當可能導致系統性能下降。通過實踐和學習,可以掌握DMA的使用技巧,在高速數據傳輸和實時信號處理等場景中發揮其最大效能。

使用C 中的chrono庫可以讓你更加精確地控制時間和時間間隔,讓我們來探討一下這個庫的魅力所在吧。 C 的chrono庫是標準庫的一部分,它提供了一種現代化的方式來處理時間和時間間隔。對於那些曾經飽受time.h和ctime折磨的程序員來說,chrono無疑是一個福音。它不僅提高了代碼的可讀性和可維護性,還提供了更高的精度和靈活性。讓我們從基礎開始,chrono庫主要包括以下幾個關鍵組件:std::chrono::system_clock:表示系統時鐘,用於獲取當前時間。 std::chron

交易所內置量化工具包括:1. Binance(幣安):提供Binance Futures量化模塊,低手續費,支持AI輔助交易。 2. OKX(歐易):支持多賬戶管理和智能訂單路由,提供機構級風控。獨立量化策略平台有:3. 3Commas:拖拽式策略生成器,適用於多平台對沖套利。 4. Quadency:專業級算法策略庫,支持自定義風險閾值。 5. Pionex:內置16 預設策略,低交易手續費。垂直領域工具包括:6. Cryptohopper:雲端量化平台,支持150 技術指標。 7. Bitsgap:

在C 中處理高DPI顯示可以通過以下步驟實現:1)理解DPI和縮放,使用操作系統API獲取DPI信息並調整圖形輸出;2)處理跨平台兼容性,使用如SDL或Qt的跨平台圖形庫;3)進行性能優化,通過緩存、硬件加速和動態調整細節級別來提升性能;4)解決常見問題,如模糊文本和界面元素過小,通過正確應用DPI縮放來解決。

C 在實時操作系統(RTOS)編程中表現出色,提供了高效的執行效率和精確的時間管理。 1)C 通過直接操作硬件資源和高效的內存管理滿足RTOS的需求。 2)利用面向對象特性,C 可以設計靈活的任務調度系統。 3)C 支持高效的中斷處理,但需避免動態內存分配和異常處理以保證實時性。 4)模板編程和內聯函數有助於性能優化。 5)實際應用中,C 可用於實現高效的日誌系統。

C 中使用字符串流的主要步驟和注意事項如下:1.創建輸出字符串流並轉換數據,如將整數轉換為字符串。 2.應用於復雜數據結構的序列化,如將vector轉換為字符串。 3.注意性能問題,避免在處理大量數據時頻繁使用字符串流,可考慮使用std::string的append方法。 4.注意內存管理,避免頻繁創建和銷毀字符串流對象,可以重用或使用std::stringstream。

在C 中測量線程性能可以使用標準庫中的計時工具、性能分析工具和自定義計時器。 1.使用庫測量執行時間。 2.使用gprof進行性能分析,步驟包括編譯時添加-pg選項、運行程序生成gmon.out文件、生成性能報告。 3.使用Valgrind的Callgrind模塊進行更詳細的分析,步驟包括運行程序生成callgrind.out文件、使用kcachegrind查看結果。 4.自定義計時器可靈活測量特定代碼段的執行時間。這些方法幫助全面了解線程性能,並優化代碼。

MySQL批量插入数据的高效方法包括:1.使用INSERTINTO...VALUES语法,2.利用LOADDATAINFILE命令,3.使用事务处理,4.调整批量大小,5.禁用索引,6.使用INSERTIGNORE或INSERT...ONDUPLICATEKEYUPDATE,这些方法能显著提升数据库操作效率。
