快速上手:Python繪製圖表的基礎教學
快速上手:Python繪製圖表的基礎教學
導語:
在資料視覺化的世界裡,繪製圖表是一項重要的技能。 Python是一門強大的程式語言,它提供了許多函式庫和工具,使圖表繪製變得簡單又有趣。本文將為您介紹基礎的Python圖表繪製技巧,並提供具體的程式碼範例。讓我們快速上手!
一、準備工作
在使用Python繪製圖表之前,我們需要安裝matplotlib函式庫。這是一個廣泛使用的圖表繪製庫,提供了豐富的視覺化函數和工具。您可以使用下列指令來安裝matplotlib:
pip install matplotlib
二、繪製折線圖
折線圖是常用的圖表類型,它可以顯示隨時間變化的資料趨勢。以下是一個簡單的例子,展示了一周內每天的用戶訪問量:
import matplotlib.pyplot as plt # 数据 days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] visits = [100, 120, 90, 80, 95, 130, 110] # 绘制折线图 plt.plot(days, visits) # 设置标题和轴标签 plt.title("Daily Visits") plt.xlabel("Day") plt.ylabel("Visits") # 显示图表 plt.show()
運行以上程式碼,您將得到一個展示每天用戶訪問量的折線圖。
三、繪製長條圖
長條圖可以用來比較不同類別或組別之間的資料。下面的範例展示了三個城市的房屋平均價格:
import matplotlib.pyplot as plt # 数据 cities = ['New York', 'London', 'Tokyo'] prices = [3400, 2500, 3800] # 绘制条形图 plt.bar(cities, prices) # 设置标题和轴标签 plt.title("Average House Prices") plt.xlabel("City") plt.ylabel("Price") # 显示图表 plt.show()
四、繪製散佈圖
散佈圖可以顯示兩個變數之間的關係。下面的範例展示了學生的數學成績和物理成績之間的關係:
import matplotlib.pyplot as plt # 数据 math_scores = [85, 90, 92, 88, 79, 95, 87, 92, 78, 82] physics_scores = [79, 82, 78, 85, 88, 90, 92, 85, 89, 92] # 绘制散点图 plt.scatter(math_scores, physics_scores) # 设置标题和轴标签 plt.title("Math vs. Physics Scores") plt.xlabel("Math Score") plt.ylabel("Physics Score") # 显示图表 plt.show()
五、繪製餅圖
餅圖可以顯示不同類別的佔比情況。以下的範例展示了三個交通方式的使用:
import matplotlib.pyplot as plt # 数据 labels = ['Car', 'Bus', 'Bike'] usage = [70, 15, 15] # 绘制饼图 plt.pie(usage, labels=labels, autopct='%1.1f%%') # 设置标题 plt.title("Transportation Usage") # 显示图表 plt.show()
結束語:
本文介紹了Python繪製圖表的基礎技巧,並提供了具體的程式碼範例。透過學習這些基礎知識,您可以開始自己的資料視覺化之旅。希望本文對您有所幫助,祝您在Python圖表繪製的世界中玩得開心!
以上是快速上手:Python繪製圖表的基礎教學的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。
