「大震驚」一位CTO:GPT-4V自動駕駛五連測
本文經AI新媒體量子位元(公眾號ID:QbitAI)授權轉載,轉載請聯絡來源。
萬眾矚目之下,今天GPT4終於推送了vision相關的功能。
今天下午抓緊和小夥伴一起測試了一下GPT對於影像感知的能力,雖有預期,但是還是大大震驚了我們。
核心觀點:
我認為自動駕駛中和語意相關的問題應該大模型都已經解決得很好了,但是大模型的可信性和空間感知能力方面仍不盡人意。
解決一些所謂和效率相關的corner case應該是綽綽有餘,但是想完全依賴大模型去獨立完成駕駛保證安全性仍然十分遙遠。
Example1: 路上出現了一些未知障礙物
#△GPT4的描述
#準確的部分:偵測到了3輛卡車,前車車牌號碼基本上正確(有漢字就忽略吧),天氣和環境正確,在沒有提示的情況下準確識別到了前方的未知障礙物。
不準確的部分:第三輛卡車的位置左右不分,第二輛卡車頭頂的文字瞎猜了一個(因為分辨率不足?)。
這還不夠,我們繼續給一點提示,去問這個物體是什麼,是不是可以壓過去。
Impressive!類似的場景測試了多個,對於未知障礙物的表現可以說非常驚人了。
Example2: 路面積水的理解
#沒有提示能自動辨識到標示這個應該是基操了,我們繼續給一些hint。
又被震驚了。 。 。能自動講出來卡車背後的霧氣,也主動提到了水坑,但是再一次把方向說成了左側。 。 。感覺這裡可能需要一些prompt engineering能更好的讓GPT輸出位置和方向。
Example3:有車輛掉頭時直接撞上了護欄
#第一幀輸入進去,因為沒有時序訊息,只是將右側的卡車當作是停靠的了。於是再來一格:
已經可以自動講出,這輛撞破了護欄,懸停在公路邊緣,太棒了。 。 。但是反而看上去更容易的道路標誌出現了錯誤。 。 。只能說,這很大模型了,它永遠能震驚你也永遠不知道什麼時候會蠢哭你。 。 。再來一格:
這次,直接講到了路面上的碎片,再次讚嘆。 。 。只不過有一次把路上的箭頭說錯了。 。 。整體而言,這個場景中需要特別注意的資訊都有覆蓋,道路標誌這種問題,瑕不掩瑜吧。
Example4: 來個搞笑的
只能說非常到位了,相較之下之前看上去無比困難的「有個人衝著你揮了揮手」這樣的case就像小兒科一樣,語義上的corner case可解。
Example5 來一個名場面。 。 。配送車誤入新修路
開始比較保守,沒有直接猜測原因,給了多種猜測,這個也倒是符合alignment的目標。
使用CoT之後問題發現問題在於並不了解這輛車是個自動駕駛車輛,故透過prompt給出這個資訊能給出比較準確的資訊。
最後經過一堆prompt,能夠輸出新鋪設瀝青,不適合駕駛這樣的結論。最後結果來說還是OK,但是過程比較曲折,需要比較多的prompt engineering,要好好設計。
這個原因可能也是因為不是第一視角的圖片,只能透過第三視角去推測。所以這個例子並不十分精確。
總結
快速的一些嘗試已經完全證明了GPT4V的強大與泛化性能,適當的prompt應當可以完全發揮出GPT4V的實力。
解決語意上的corner case應該非常可期,但幻覺的問題會仍然困擾著一些和安全相關場景中的應用。
非常exciting,個人認為合理使用這樣的大模型可以大大加快L4甚至L5自動駕駛的發展,然而是否LLM一定是要直接開車?尤其是端到端開車,仍然是一個值得商榷的問題。
以上是「大震驚」一位CTO:GPT-4V自動駕駛五連測的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

寫在前面&筆者的個人理解三維Gaussiansplatting(3DGS)是近年來在顯式輻射場和電腦圖形學領域出現的一種變革性技術。這種創新方法的特點是使用了數百萬個3D高斯,這與神經輻射場(NeRF)方法有很大的不同,後者主要使用隱式的基於座標的模型將空間座標映射到像素值。 3DGS憑藉其明確的場景表示和可微分的渲染演算法,不僅保證了即時渲染能力,而且引入了前所未有的控制和場景編輯水平。這將3DGS定位為下一代3D重建和表示的潛在遊戲規則改變者。為此我們首次系統性地概述了3DGS領域的最新發展與關

昨天面試被問到了是否做過長尾相關的問題,所以就想著簡單總結一下。自動駕駛長尾問題是指自動駕駛汽車中的邊緣情況,即發生機率較低的可能場景。感知的長尾問題是目前限制單車智慧自動駕駛車輛運行設計域的主要原因之一。自動駕駛的底層架構和大部分技術問題已經解決,剩下的5%的長尾問題,逐漸成了限制自動駕駛發展的關鍵。這些問題包括各種零碎的場景、極端的情況和無法預測的人類行為。自動駕駛中的邊緣場景"長尾"是指自動駕駛汽車(AV)中的邊緣情況,邊緣情況是發生機率較低的可能場景。這些罕見的事件

0.寫在前面&&個人理解自動駕駛系統依賴先進的感知、決策和控制技術,透過使用各種感測器(如相機、光達、雷達等)來感知周圍環境,並利用演算法和模型進行即時分析和決策。這使得車輛能夠識別道路標誌、檢測和追蹤其他車輛、預測行人行為等,從而安全地操作和適應複雜的交通環境。這項技術目前引起了廣泛的關注,並認為是未來交通領域的重要發展領域之一。但是,讓自動駕駛變得困難的是弄清楚如何讓汽車了解周圍發生的事情。這需要自動駕駛系統中的三維物體偵測演算法可以準確地感知和描述周圍環境中的物體,包括它們的位置、

StableDiffusion3的论文终于来了!这个模型于两周前发布,采用了与Sora相同的DiT(DiffusionTransformer)架构,一经发布就引起了不小的轰动。与之前版本相比,StableDiffusion3生成的图质量有了显著提升,现在支持多主题提示,并且文字书写效果也得到了改善,不再出现乱码情况。StabilityAI指出,StableDiffusion3是一个系列模型,其参数量从800M到8B不等。这一参数范围意味着该模型可以在许多便携设备上直接运行,从而显著降低了使用AI

原文標題:SIMPL:ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving論文連結:https://arxiv.org/pdf/2402.02519.pdf程式碼連結:https://github.com/HKUST-Aerial-Robotics/SIMPLobotics單位論文想法:本文提出了一種用於自動駕駛車輛的簡單且有效率的運動預測基線(SIMPL)。與傳統的以代理為中心(agent-cent

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

軌跡預測在自動駕駛中承擔著重要的角色,自動駕駛軌跡預測是指透過分析車輛行駛過程中的各種數據,預測車輛未來的行駛軌跡。作為自動駕駛的核心模組,軌跡預測的品質對於下游的規劃控制至關重要。軌跡預測任務技術堆疊豐富,需熟悉自動駕駛動/靜態感知、高精地圖、車道線、神經網路架構(CNN&GNN&Transformer)技能等,入門難度很高!許多粉絲期望能夠盡快上手軌跡預測,少踩坑,今天就為大家盤點下軌跡預測常見的一些問題和入門學習方法!入門相關知識1.預習的論文有沒有切入順序? A:先看survey,p
