語言、機器人破壁,MIT等以GPT-4生成模擬任務,遷移到真實世界
重寫內容為:機器之心報道
編輯:杜偉、小舟
GPT-4 與機器人又擦出了新的火花。
在機器人領域,實現通用機器人策略需要大量數據,而在真實世界收集這些數據又耗時費力。儘管模擬為產生場景層級和實例層級的不同體量的資料提供了一種經濟的解決方案,但由於需要大量的人力(尤其是對複雜任務),在模擬環境中增加任務多樣性仍面臨挑戰。這就導致典型的人工模擬基準通常只能包含數十到數百個任務。
如何解決呢?近年來,大語言模型在自然語言處理及各類任務的程式碼產生方面不斷取得重大進展。同樣,LLM 已經應用於機器人的多個方面,包括使用者介面、任務和運動規劃、機器人日誌總結、成本和獎勵設計,揭示了在物理基礎和程式碼生成任務上的強大能力。
在近日的一項研究中,來自 MIT CSAIL、上海交通大學等機構的研究者進一步探究 LLM 是否可以用來創建多樣化的模擬任務,並進一步挖掘它們的能力。
具體來講,研究者提出了一個基於 LLM 的框架 GenSim,它為設計和驗證任務資產安排、任務進展提供了一種自動化機制。更重要的是,生成的任務表現出了極大的多樣性,促進了機器人策略的任務級泛化。此外從概念上講,利用 GenSim,LLM 的推理和編碼能力透過中間合成的模擬資料被提煉成了語言 - 視覺 - 行動策略。
需要重寫的是:論文連結:
https://arxiv.org/pdf/2310.01361.pdf
#GenSim 框架由以下三個部分組成:
- 首先是透過自然語言指令提出新任務以及對應程式碼實現的提示機制;
- 其次是快取先前產生的高品質指令程式碼以用於驗證和語言模型微調的任務庫,並作為綜合任務資料集返回;
- 最後是利用產生的資料來增強任務層級泛化能力的語言調整多任務策略訓練流程。
同時該框架透過兩種不同的模式運作。其中在目標導向設定中,使用者有特定的任務或希望設計一個任務課程。這時 GenSim 採取自上而下的方法,以預期任務作為輸入,迭代地產生相關任務以實現預期目標。而在探索性環境中,如果缺乏目標任務的先驗知識,則 GenSim 逐漸探索現有任務以外的內容,並建立與任務無關的基礎策略。
在下圖 1 中,研究者初始化了包含 10 個人工策劃任務的任務庫,使用 GenSim 對它進行擴展並產生 100 多個任務。
研究者也提出了幾個客製化的指標來漸進地衡量生成模擬任務的質量,並在目標導向和探索性設定中評估了幾種 LLM。其中對於 GPT-4 產生的任務庫,他們對 GPT-3.5 和 Code-Llama 等 LLM 進行有監督微調,進一步提升了 LLM 的任務產生效能。同時透過策略訓練定量地衡量任務的可實現性,並提供不同屬性的任務統計資料和不同模型之間的程式碼比較。
不僅如此,研究者還訓練了多任務機器人策略,與僅在人工策劃任務上訓練的模型相比,這些策略在所有生成任務上都能很好地泛化,並提高了零樣本泛化性能。其中與 GPT-4 生成任務的聯合訓練可以將泛化效能提升 50%,並在模擬中將約 40% 的零樣本任務遷移到新任務中。
最後,研究者也考慮了模擬到真實的遷移,顯示在不同模擬任務上的預訓練可以將真實世界的泛化能力提升 25%。
總之,在不同 LLM 生成的任務上訓練的策略實現了對新任務的更好任務級泛化能力,彰顯了透過 LLM 擴展模擬任務來訓練基礎策略的潛力。
Tenstorrent AI 產品管理總監Shubham Saboo 給予了這項研究很高的評價,他表示,這是GPT-4 結合機器人的突破性研究,透過GPT-4 等LLM 來產生autopilot 上的一系列模擬機器人任務,使機器人的零樣本學習和真實世界適應成為了現實。
方法介紹
如下圖 2 所示,GenSim 框架透過程式合成產生模擬環境、任務和演示。 GenSim pipeline 從任務建立器開始,prompt 鏈以兩種模式運行,即目標導向模式和探索模式,取決於目標任務。 GenSim 中的任務庫是一個記憶體元件,用於儲存先前產生的高品質任務,任務庫中儲存的任務可用於多任務策略訓練或微調 LLM。
任務創建器
#如下圖 3 所示,語言鏈會先產生任務描述,然後再產生相關的實作。任務描述包括任務名稱、資源和任務摘要。研究在 pipeline 中採用少樣本 prompt 來產生程式碼。
任務庫
GenSim 框架中的任務庫會儲存任務建立器產生的任務,以產生更好的新任務和訓練多任務策略。任務庫是根據人工創建的基準中的任務進行初始化的。
任務庫為任務創建器為描述生成階段提供了作為條件的先前的任務描述,為程式碼生成階段提供了先前的程式碼,並prompt 任務創建器從任務庫中選擇參考任務作為編寫新任務的範例。完成任務實現並通過所有測試後,LLM 會被 prompt,以「反思(reflect)」新任務和任務庫,並形成是否應將新產生的任務新增至庫中的綜合決策。
如下圖 4 所示,研究也觀察到 GenSim 表現出有趣的任務級組合和外推行為:
LLM 監督的多任務策略
產生任務後,研究使用這些任務實作來產生示範資料並訓練操作策略,並使用與 Shridhar et al. (2022) 類似的雙流傳輸網路架構。
如下圖5 所示,該研究將程序視為任務和相關演示數據的有效表徵(圖5),就可以定義任務之間的嵌入空間,其距離指標對於來自感知的各種因素(例如物件姿態和形狀)更加穩健。
為了實現內容的重寫,需要將原文的語言改寫為中文,不需要出現原句
#該研究透過實驗來驗證 GenSim 框架,針對以下具體問題:(1)LLM 設計和實現模擬任務的效果如何? GenSim 可以改進 LLM 在任務產生方面的表現嗎? (2) 對 LLM 產生的任務進行訓練是否可以提升策略泛化能力?如果給予更多的生成任務,策略訓練是否會受益更多? (3) 針對 LLM 產生的模擬任務進行預訓練是否有利於現實世界的機器人策略部署?
評估 LLM 機器人模擬任務的泛化能力
#如下圖 6 所示,對於探索模式和目標導向模式任務生成,少樣本和任務庫的兩階段 prompt 鏈可以有效提高程式碼產生的成功率。
任務層級泛化
#相關任務的少樣本策略最佳化。從下圖 7 左可以觀察到,聯合訓練 LLM 產生的任務可以將原始 CLIPort 任務上的策略效能提升 50% 以上,尤其是在低資料情況(如 5 個 demo)下。
對未見過任務的零樣本策略泛化。從圖 7 可以看到,透過對 LLM 產生的更多任務進行預訓練,研究者的模型可以更好地泛化到原始 Ravens 基準中的任務。圖 7 右中,研究者也對人工編寫任務、閉源 LLM 和開源微調 LLM 等不同任務來源上的 5 個任務進行了預訓練,並觀察到了類似的零樣本任務層級泛化。
讓預訓練模型適應真實世界
研究者將模擬環境中訓練的策略遷移到了真實環境。結果如下表1 所示,在70 個GPT-4 產生的任務上進行預訓練的模型在9 個任務上進行了10 次實驗,取得68.8% 的平均成功率,與僅在CLIPort 任務上進行預訓練的基準模型相比提升了25% 以上,與僅在50 個任務上預訓練的模型相比提升了15%。
研究者也觀察到,對不同模擬任務的預訓練提高了長期複雜任務的穩健性。比方說,GPT-4 預訓練的模型在真實世界的 build-wheel 任務上展現了更穩健的表現。
消融實驗
模擬訓練成功率。在下表 2 中,研究者在擁有 200 個 demo 的生成任務子集上,示範了單任務和多任務策略訓練的成功率。對於 GPT-4 生成任務的策略訓練,它的平均任務成功率為單任務 75.8%,多任務 74.1%。
產生任務統計。下圖 9 (a) 中,研究者展示了 LLM 產生的 120 個任務的不同特徵的任務統計。其中 LLM 模型產生的顏色、資產、動作和實例數量之間存在著有趣的平衡。例如,產生的程式碼包含了許多超過 7 個物件實例的場景,以及許多拾起 - 放置原始動作和區塊等資產。
在程式碼產生的比較中,研究者在下圖9(b)中對GPT-4和Code Llama的自上而下實驗中的失敗案例進行了定性評估
更多技術細節請參閱原文。
以上是語言、機器人破壁,MIT等以GPT-4生成模擬任務,遷移到真實世界的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

眾所周知,iPhone是最人性化的電子產品之一,其中一個原因是它可以輕鬆地根據您的喜好進行個性化設定。在個人化設定中,您可以變更語言,這與您在設定iPhone時選擇的語言不同。如果您對多種語言熟悉,或者您的iPhone語言設定錯誤,您可以按照我們下面解釋的方法進行更改。如何更改iPhone的語言[3種方法]iOS允許使用者在iPhone上自由切換首選語言,以適應不同的需求。您可以更改與Siri的互動語言,方便與語音助理溝通。同時,在使用本機鍵盤時,您可以輕鬆地在多種語言之間切換,提高輸入效率。

機器之能報道編輯:吳昕國內版的人形機器人+大模型組隊,首次完成疊衣服這類複雜柔性材料的操作任務。隨著融合了OpenAI多模態大模型的Figure01揭開神秘面紗,國內同行的相關進展一直備受關注。就在昨天,國內"人形機器人第一股"優必選發布了人形機器人WalkerS深入融合百度文心大模型後的首個Demo,展示了一些有趣的新功能。現在,得到百度文心大模型能力加持的WalkerS是這個樣子的。和Figure01一樣,WalkerS沒有走動,而是站在桌子後面完成一系列任務。它可以聽從人類的命令,折疊衣物

在工業自動化技術領域,最近有兩個熱點很難被忽視:人工智慧(AI)和英偉達(Nvidia)。不要改變原內容的意思,微調內容,重寫內容,不要續寫:「不僅如此,這兩者密切相關,因為英偉達在不僅僅局限於其最開始的圖形處理單元(GPU),正在將其GPU科技擴展到數位孿生領域,同時緊密連接著新興的AI技術。泰瑞達機器人及其MiR和優傲機器人公司。 Recently,Nvidiahascoll

人形機器人Ameca升級第二代了!最近,在世界行動通訊大會MWC2024上,世界上最先進機器人Ameca又現身了。會場周圍,Ameca引來一大波觀眾。得到GPT-4加持後,Ameca能夠對各種問題做出即時反應。 「來一段舞蹈」。當被問及是否有情感時,Ameca用一系列的面部表情做出回應,看起來非常逼真。就在前幾天,Ameca背後的英國機器人公司EngineeredArts剛剛示範了團隊最新的開發成果。影片中,機器人Ameca具備了視覺能力,能看見並描述房間整個狀況、描述具體物體。最厲害的是,她還能

這週,由OpenAI、微軟、貝佐斯和英偉達投資的機器人公司FigureAI宣布獲得接近7億美元的融資,計劃在未來一年內研發出可獨立行走的人形機器人。而特斯拉的擎天柱也屢屢傳出好消息。沒人懷疑,今年會是人形機器人爆發的一年。一家位於加拿大的機器人公司SanctuaryAI最近發布了一款全新的人形機器人Phoenix。官方號稱它能以和人類一樣的速率自主完成許多工作。世界上第一台能以人類速度自主完成任務的機器人Pheonix可以輕輕地抓取、移動並優雅地將每個物件放置在它的左右兩側。它能夠自主辨識物體的

一眨眼的功夫,機器人都已經學會變魔術了?只見它先是拿起桌上的水勺,向觀眾證明了裡面什麼也沒有……然後,它又把手中雞蛋似的物體放了進去,然後把水勺放回桌子上,開始「施法」… …就在它把水勺再次拿起的時候,奇蹟發生了。原先放進去的雞蛋不翼而飛,跳出的東西變成了一個籃球……再來看一遍連貫動作:△此動圖為二倍速一套動作下來如行雲流水,只有把視頻用0.5倍速反复觀看,才終於發現其中的端倪了:如果手速再快一些,大概真的就可以瞞天過海了。有網友感嘆,機器人變魔術的程度比自己還要高:為我們表演這段魔術的,是Mag

近幾年最受消費者歡迎的智慧家電,掃拖機器人可謂是其中之一。它所帶來的操作便利性,甚至是無需操作,讓懶人們釋放了雙手,讓消費者能夠從日常的家務中「解放」出來,也能拿更多的時間花在自己喜歡的事情上,變相提高了生活品質。藉著這股熱潮,市面上幾乎所有的家電產品品牌都在做自己的掃拖機器人,一時間使得整個掃拖機器人市場熱鬧非凡。但市場的快速拓張必然會帶來一個隱患:很多廠商會採用機海戰術的方式快速佔領更多的市場份額,從而導致很多新品並沒有什麼升級點,說它是“套娃”機型也不為過。不過,並不是所有的掃拖機器人都是

有時候我們再剛入手安裝好電腦系統之後發現系統時英文的,遇到這種情況我們就需要把電腦的語言改成中文,那麼win10系統裡面該怎麼把電腦的語言改成中文呢,現在就給大家帶來具體的操作方法。 win10電腦語言怎麼改成中文1、開啟電腦點選左下角的開始按鍵。 2、點選左側的設定選項。 3.開啟的頁面選擇「時間和語言」4、開啟後,再點選左側的「語言」5、在這裡就可以設定你要的電腦語言。
