首頁 > 科技週邊 > 人工智慧 > 陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

WBOY
發布: 2023-10-23 11:13:11
轉載
779 人瀏覽過

繼給GPT-4「代言」之後,Copilot也被陶哲軒瘋狂安麗。

他直言,在程式設計時,Copilot能直接預測他下一步要做什麼。

有了Copilot之後,研究做起來也更方便了,陶哲軒也用它輔助自己完成了最新的研究成果。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

陶哲軒說,這次的論文中,有關這部分的內容其實只有一頁。

但具體完成這一頁紙的證明,他足足寫了200多行程式碼,用的還是新學的程式語言Lean4。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

而在陶哲軒公開程式碼的GitHub頁面上顯示,Copilot將寫程式碼的速度提升了一半以上。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

陶哲軒介紹,之所以選擇Lean4是看中了它的“重寫策略”,也就是對一長段表達式進行針對性的局部替換。

舉個例子,假如定義了一個複雜的函數f(x),當我們想要輸入f(114514)的表達式時,直接用程式碼把x「重寫」成114514就可以了。

陶哲軒說,這個特性比起需要重複輸入公式的LaTeX簡直不要太方便。

那麼陶哲軒這次的「一頁紙證明」又為我們帶來了什麼新成果呢?

一頁紙證明新不等式

這篇論文談論了有關麥克勞林不等式的問題。

麥克勞林不等式是數學中一個經典的不等式,它基於「非負實數的算數平均值大於等於幾何平均值」這一定律導出,可以表述為:

設y1…yn為非負實數,對k=1…n,定義平均值Sk為(分母為分子的項數):

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

它是作為具有根的n 次多項式的歸一化係數而出現。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

(記得這個式子,我們稱它為式1)

則麥克勞林不等式可以表示為:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

#其中,當且僅當所有yi相等時等號成立。

在微積分中,還有一個經典的牛頓不等式:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

對任意1≤kn都是非負,牛頓不等式就可以簡單地描述麥克勞林不等式了:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

#但如果不加上這個限制條件,即允許負數項的存在,用牛頓不等式就無法表示麥克勞林不等式了。

於是針對牛頓不等式中可能存在負數項的情況,陶哲軒提出了一組新的不等式變體:

對任意r>0且1≤ℓ≤n,必有式2或式3成立。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

這便是陶哲軒這一頁紙所要證明的內容,具體證明過程是這樣的:

不妨建構一個關於複雜變數z的多項式P(z):

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

由前面的式1和三角不等式可得:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

所以只需要建立下界:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

對P(z)取絕對值再取對數可得:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

由於對任意實數t,t ↦ log(et a)呈凸性且a>0,可以得到不等式:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

當a=r2,t=2log yj時,可以得到:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

以上就是陶哲軒給出的證明過程,但是,當歸一化的|Sn|=1時,下式成立:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

下一步:建立細化版本

除了這次提到的“一頁紙證明”,陶哲軒的這篇論文中還提出了另一項新的定理,即對任意1 ≤ k ≤ ℓ≤ n.:

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

在部落格文章中,陶哲軒透露,他的下一步計畫就是提出這一不等式的細化版本。

陶哲軒說,證明的過程「就像練習一樣」會很簡單,用微積分就能搞定。

不過,他也提到會有一個小困難,因為這部分論證過程使用到了漸進符號。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

新的結論具體怎樣,讓我們拭目以待。

One More Thing

陶哲軒可謂是AI工具的忠實粉絲,Copilot、GPT-4,還有一些其他輔助工具都受到他的推薦。

這次,他也對大模型的發展提出了新的期待,希望有一天模型可以直接產生不等式變體。

陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程

論文網址:https://arxiv.org/abs/2310.05328 

#

以上是陶哲軒瘋狂安麗Copilot:它幫我完成了一頁紙證明,甚至能猜出我後面的過程的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:51cto.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板