目錄
整體與漸進式結合
較少參數匹敵SOTA
首頁 科技週邊 人工智慧 蘋果「套娃」式擴散模型,訓練步數減少七成!

蘋果「套娃」式擴散模型,訓練步數減少七成!

Oct 25, 2023 pm 02:13 PM
模型 訓練

蘋果的一項最新研究,大幅提高了擴散模型在高解析度影像上表現。

利用這個方法,同樣解析度的影像,訓練步數減少了超過七成。

在1024×1024的解析度下,圖片畫質直接拉滿,細節都清晰可見。

蘋果「套娃」式擴散模型,訓練步數減少七成!

蘋果把這項成果命名為MDM,DM就是擴散模型(Diffusion Model)的縮寫,而第一個M則代表了套娃(Matryoshka)。

就像真的套娃一樣,MDM在高解析度過程中嵌套了低解析度過程,而且是多層嵌套。

高低解析度擴散過程同時進行,大幅降低了傳統擴散模型在高解析度過程中的資源消耗。

蘋果「套娃」式擴散模型,訓練步數減少七成!

對於256×256解析度的影像,在批次大小(batch size)為1024的環境下,傳統擴散模型需要訓練150萬步,而MDM僅需39萬,減少了超七成。

另外,MDM採用了端到端訓練,不依賴特定資料集和預訓練模型,在提速的同時依然保證了生成質量,而且使用靈活。

蘋果「套娃」式擴散模型,訓練步數減少七成!

不僅可以畫出高解析度的影像,還能合成16×256²的影片。

蘋果「套娃」式擴散模型,訓練步數減少七成!

有網友評論到,蘋果終於把文字連接到圖像中了。

蘋果「套娃」式擴散模型,訓練步數減少七成!

那麼,MDM的「套娃」技術,具體是怎麼做的呢?

整體與漸進式結合

蘋果「套娃」式擴散模型,訓練步數減少七成!

在開始訓練之前,需要將資料進行預處理,高解析度的影像會用一定演算法重新取樣,得到不同分辨率的版本。

然後就是利用這些不同分辨率的資料進行聯合UNet建模,小UNet處理低分辨率,並嵌套進處理高分辨率的大UNet。

透過跨解析度的連接,不同大小的UNet之間可以共用特徵和參數。

蘋果「套娃」式擴散模型,訓練步數減少七成!

MDM的訓練則是一個循序漸進的過程。

雖然建模是聯合進行的,但訓練過程並不會一開始就針對高解析度進行,而是從低解析度開始逐步擴大。

這樣做可以避免龐大的運算量,還可以讓低解析度UNet的預訓練可以加速高解析度訓練過程。

訓練過程中會逐步將更高解析度的訓練資料加入整體過程中,讓模型適應漸進增長的分辨率,平滑過渡到最終的高解析度過程。

蘋果「套娃」式擴散模型,訓練步數減少七成!

不過從整體來看,在高解析度過程逐步加入之後,MDM的訓練依舊是端到端的聯合過程。

在不同解析度的聯合訓練當中,多個解析度上的損失函數一起參與參數更新,避免了多階段訓練帶來的誤差累積。

每個解析度都有對應的資料項目的重建損失,不同解析度的損失被加權合併,其中為保證產生質量,低解析度損失權重較大。

在推理階段,MDM採用的同樣是並行與漸進結合的策略。

此外,MDM利還採用了預先訓練的圖像分類模型(CFG)來引導生成樣本向更合理的方向優化,並為低分辨率的樣本添加噪聲,使其更貼近高分辨率樣本的分佈。

那麼,MDM的效果究竟如何呢?

較少參數匹敵SOTA

影像方面,在ImageNet和CC12M資料集上,MDM的FID(數值越低效果越好)和CLIP表現都顯著優於一般擴散模型。

其中FID用來評價圖像本身的質量,CLIP則說明了圖像和文字指令之間的匹配程度。

蘋果「套娃」式擴散模型,訓練步數減少七成!

和DALL E、IMAGEN等SOTA模型相比,MDM的表現也很接近,但MDM的訓練參數遠少於這些模型。

蘋果「套娃」式擴散模型,訓練步數減少七成!

不僅是優於一般擴散模型,MDM的表現也超過了其他級聯擴散模型。

蘋果「套娃」式擴散模型,訓練步數減少七成!

消融實驗結果表明,低解析度訓練的步數越多,MDM效果增強就越明顯;另一方面,嵌套層級越多,取得相同的CLIP得分所需的訓練步數就越少。

蘋果「套娃」式擴散模型,訓練步數減少七成!

而關於CFG參數的選擇,則是多次測試後再FID和CLIP之間權衡的結果(CLIP得分高相對於CFG強度增加)。

蘋果「套娃」式擴散模型,訓練步數減少七成!

以上是蘋果「套娃」式擴散模型,訓練步數減少七成!的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

See all articles