增強多模態3D目標偵測的準確特徵對齊:GraphAlign的應用
原標題:GraphAlign: Enhancing Accurate Feature Alignment by Graph matching for Multi-Modal 3D Object Detection
需要重寫的內容是:論文連結:https://arxiv.org/pdf/2310.08261. pdf
作者單位:北京交通大學河北科技大學清華大學
##論文想法:
LiDAR 和相機是自動駕駛中3D目標偵測的互補感光元件。然而,研究點雲和影像之間的非自然交互作用具有挑戰,關鍵在於如何進行異構模態的特徵對齊。目前,許多方法僅透過投影校準來實現特徵對齊,而忽略了感測器之間座標轉換精度誤差的問題,導致性能次優。本文提出了一種名為GraphAlign的更準確的特徵對齊策略,透過圖匹配來進行3D目標檢測。具體而言,本文將影像分支中語意分割編碼器的影像特徵與LiDAR分支中3D稀疏CNN的點雲特徵進行融合。為了減少運算量,本文利用歐氏距離計算在點雲特徵子空間內進行最近鄰關係構造。透過影像和點雲之間的投影校準,將點雲特徵的最近鄰投影到影像特徵上。然後,透過將單一點雲的最近鄰與多個影像進行匹配,本文搜尋更合適的特徵對齊。此外,本文也提供了一個自註意力模組,以增強重要關係的權重,從而微調異構模態之間的特徵對齊。在nuScenes基準測試中進行了大量實驗證明了本文提出的GraphAlign的有效性和效率#主要貢獻:
本文提出了GraphAlign,一種基於圖匹配(graph matching)的特徵對齊框架,來解決多模態3D 目標偵測中的未對齊問題。 本文提出圖形特徵對齊(Graph Feature Alignment)(GFA)和自註意力特徵對齊(Self-Attention Feature Alignment)(SAFA)模組來實現圖像特徵和點雲特徵的精確對齊,這可以進一步增強點雲和影像模態之間的特徵對齊,從而提高偵測精度。 透過使用KITTI和nuScenes兩個基準進行實驗,我們證明了GraphAlign可以有效提高點雲檢測的精確度,尤其是在遠距離目標檢測方面網路設計:
實驗結果:
引用:
Song, Z., Wei, H., Bai, L., Yang, L., & Jia, C. (2023) . GraphAlign: Enhancing Accurate Feature Alignment by Graph matching for Multi-Modal 3D Object Detection. ArXiv. /abs/2310.08261
以上是增強多模態3D目標偵測的準確特徵對齊:GraphAlign的應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

寫在前面&筆者的個人理解三維Gaussiansplatting(3DGS)是近年來在顯式輻射場和電腦圖形學領域出現的一種變革性技術。這種創新方法的特點是使用了數百萬個3D高斯,這與神經輻射場(NeRF)方法有很大的不同,後者主要使用隱式的基於座標的模型將空間座標映射到像素值。 3DGS憑藉其明確的場景表示和可微分的渲染演算法,不僅保證了即時渲染能力,而且引入了前所未有的控制和場景編輯水平。這將3DGS定位為下一代3D重建和表示的潛在遊戲規則改變者。為此我們首次系統性地概述了3DGS領域的最新發展與關

您一定記得,尤其是如果您是Teams用戶,Microsoft在其以工作為重點的視訊會議應用程式中添加了一批新的3DFluent表情符號。在微軟去年宣佈為Teams和Windows提供3D表情符號之後,該過程實際上已經為該平台更新了1800多個現有表情符號。這個宏偉的想法和為Teams推出的3DFluent表情符號更新首先是透過官方部落格文章進行宣傳的。最新的Teams更新為應用程式帶來了FluentEmojis微軟表示,更新後的1800表情符號將為我們每天

0.寫在前面&&個人理解自動駕駛系統依賴先進的感知、決策和控制技術,透過使用各種感測器(如相機、光達、雷達等)來感知周圍環境,並利用演算法和模型進行即時分析和決策。這使得車輛能夠識別道路標誌、檢測和追蹤其他車輛、預測行人行為等,從而安全地操作和適應複雜的交通環境。這項技術目前引起了廣泛的關注,並認為是未來交通領域的重要發展領域之一。但是,讓自動駕駛變得困難的是弄清楚如何讓汽車了解周圍發生的事情。這需要自動駕駛系統中的三維物體偵測演算法可以準確地感知和描述周圍環境中的物體,包括它們的位置、

寫在前面&筆者的個人理解目前,在整個自動駕駛系統當中,感知模組扮演了其中至關重要的角色,行駛在道路上的自動駕駛車輛只有通過感知模組獲得到準確的感知結果後,才能讓自動駕駛系統中的下游規控模組做出及時、正確的判斷和行為決策。目前,具備自動駕駛功能的汽車中通常會配備包括環視相機感測器、光達感測器以及毫米波雷達感測器在內的多種數據資訊感測器來收集不同模態的信息,用於實現準確的感知任務。基於純視覺的BEV感知演算法因其較低的硬體成本和易於部署的特點,以及其輸出結果能便捷地應用於各種下游任務,因此受到工業

當八卦開始傳播新的Windows11正在開發中時,每個微軟用戶都對新作業系統的外觀以及它將帶來什麼感到好奇。經過猜測,Windows11就在這裡。作業系統帶有新的設計和功能變更。除了一些添加之外,它還附帶功能棄用和刪除。 Windows11中不存在的功能之一是Paint3D。雖然它仍然提供經典的Paint,它對抽屜,塗鴉者和塗鴉者有好處,但它放棄了Paint3D,它提供了額外的功能,非常適合3D創作者。如果您正在尋找一些額外的功能,我們建議AutodeskMaya作為最好的3D設計軟體。如

ChatGPT為AI產業注入一劑雞血,一切曾經的不敢想,都成為現今的基操。正持續進擊的Text-to-3D,就被視為繼Diffusion(影像)和GPT(文字)後,AIGC領域的下一個前緣熱點,得到了前所未有的關注。這不,一款名為ChatAvatar的產品低調公測,火速收攬超70萬瀏覽與關注,並登上抱抱臉週熱門(Spacesoftheweek)。 △ChatAvatar也將支援從AI生成的單視角/多視角原畫生成3D風格化角色的Imageto3D技術,受到了廣泛關注現行beta版本生成的3D模型,

對於自動駕駛應用程式來說,最終還是需要對3D場景進行感知。道理很簡單,車輛不能靠著一張影像上得到感知結果來行駛,就算是人類駕駛也不能對著一張影像來開車。因為物體的距離和場景的和深度資訊在2D感知結果上是體現在現在的,而這些資訊才是自動駕駛系統對周圍環境做出正確判斷的關鍵。一般來說,自動駕駛車輛的視覺感應器(例如攝影機)安裝在車身上方或車內後視鏡上。無論哪個位置,攝影機所得到的都是真實世界在透視視圖(PerspectiveView)下的投影(世界座標係到影像座標系)。這種視圖與人類的視覺系統很類似,

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對
