目錄
1、多層感知機
2、卷積神經網路
3、LSTMNet
4、辅助代码
首頁 科技週邊 人工智慧 機器學習|PyTorch簡明教學下篇

機器學習|PyTorch簡明教學下篇

Nov 02, 2023 pm 05:29 PM
機器學習

接著上篇《PyTorch簡明教程上篇》,繼續學習多層感知機,卷積神經網路和LSTMNet。

1、多層感知機

多層感知機是一種簡單的神經網絡,也是深度學習的重要基礎。它透過在網路中添加一個或多個隱藏層來克服線性模型的限制。具體的圖示如下:

機器學習|PyTorch簡明教學下篇

import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, 512, bias=False),torch.nn.ReLU(),torch.nn.Dropout(0.2),torch.nn.Linear(512, output_dim, bias=False),)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.Adam(model.parameters())batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
登入後複製

(1)以上程式碼和單層神經網路的程式碼類似,差異在於build_model建構一個包含三個線性層和兩個ReLU激活函數的神經網路模型:

  • 在模型中加入第一個線性層,該層的輸入特徵數為input_dim,輸出特徵數量為512;
  • 接著增加一個ReLU激活函數和一個Dropout層,用於增強模型的非線性能力和防止過擬合;
  • 向模型中添加第二個線性層,該層的輸入特徵數量為512,輸出特徵數量為512;
  • 接著加入一個ReLU激活函數和一個Dropout層;
  • #在模型中加入第三個線性層,該層的輸入特徵數為512,輸出特徵數為output_dim ,即模型的輸出類別數;

(2)什麼是ReLU激活函數? ReLU(Rectified Linear Unit,修正線性單元)活化函數是深度學習和神經網路中常用的一種活化函數,ReLU函數的數學表達式為:f(x) = max(0, x),其中x是輸入值。 ReLU函數的特性是當輸入值小於等於0時,輸出為0;當輸入值大於0時,輸出等於輸入值。簡單來說,ReLU函數就是將負數部分抑制為0,正數部分不變。 ReLU活化函數在神經網路中的作用是引入非線性因素,使得神經網路能夠擬合複雜的非線性關係,同時,ReLU函數相對於其他活化函數(如Sigmoid或Tanh)具有計算速度快、收斂速度快等優點;

(3)什麼是Dropout層? Dropout層是一種在神經網路中用來防止過度擬合的技術。在訓練過程中,Dropout層會隨機地將一部分神經元的輸出置為0,即"丟棄"這些神經元,這樣做的目的是為了減少神經元之間的相互依賴,從而提高網路的泛化能力;

(4)print("Epoch %d, cost = %f, acc = %.2f%%" % (i 1, cost / num_batches, 100. * np.mean(predY == teY )))最後列印目前訓練的輪次,損失值和acc,上述的程式碼輸出如下:

...Epoch 91, cost = 0.011129, acc = 98.45%Epoch 92, cost = 0.007644, acc = 98.58%Epoch 93, cost = 0.011872, acc = 98.61%Epoch 94, cost = 0.010658, acc = 98.58%Epoch 95, cost = 0.007274, acc = 98.54%Epoch 96, cost = 0.008183, acc = 98.43%Epoch 97, cost = 0.009999, acc = 98.33%Epoch 98, cost = 0.011613, acc = 98.36%Epoch 99, cost = 0.007391, acc = 98.51%Epoch 100, cost = 0.011122, acc = 98.59%
登入後複製

可以看出最後相同的資料分類,準確率比單層神經網路高(98.59% > 97.68%)。

2、卷積神經網路

卷積神經網路(CNN)是一種深度學習演算法。當輸入矩陣時,CNN可以對其中的重要和不重要部分進行區分(分配權重)。相較於其他分類任務,CNN對資料預處理的要求並不高,只要經過充分的訓練,就能夠學習到矩陣的特性。下圖展示了這個過程:

機器學習|PyTorch簡明教學下篇

import numpy as npimport torchfrom torch.autograd import Variablefrom torch import optimfrom data_util import load_mnistclass ConvNet(torch.nn.Module):def __init__(self, output_dim):super(ConvNet, self).__init__()self.conv = torch.nn.Sequential()self.conv.add_module("conv_1", torch.nn.Conv2d(1, 10, kernel_size=5))self.conv.add_module("maxpool_1", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_1", torch.nn.ReLU())self.conv.add_module("conv_2", torch.nn.Conv2d(10, 20, kernel_size=5))self.conv.add_module("dropout_2", torch.nn.Dropout())self.conv.add_module("maxpool_2", torch.nn.MaxPool2d(kernel_size=2))self.conv.add_module("relu_2", torch.nn.ReLU())self.fc = torch.nn.Sequential()self.fc.add_module("fc1", torch.nn.Linear(320, 50))self.fc.add_module("relu_3", torch.nn.ReLU())self.fc.add_module("dropout_3", torch.nn.Dropout())self.fc.add_module("fc2", torch.nn.Linear(50, output_dim))def forward(self, x):x = self.conv.forward(x)x = x.view(-1, 320)return self.fc.forward(x)def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = trX.reshape(-1, 1, 28, 28)teX = teX.reshape(-1, 1, 28, 28)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples = len(trX)n_classes = 10model = ConvNet(output_dim=n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
登入後複製

(1)以上程式碼定義了一個名為ConvNet的類,它繼承自torch.nn.Module類,表示一個卷積神經網絡,在__init__方法中定義了兩個子模組conv和fc,分別表示卷積層和全連接層。在conv子模組中,我們定義了兩個卷積層(torch.nn.Conv2d)、兩個最大池化層(torch.nn.MaxPool2d)、兩個ReLU激活函數(torch.nn.ReLU)和一個Dropout層(torch.nn.Dropout)。在fc子模組中,定義了兩個線性層(torch.nn.Linear)、一個ReLU激活函數和一個Dropout層;

池化層在CNN中扮演著重要的角色,其主要目的有以下幾點:

  • 降低维度:池化层通过对输入特征图(Feature maps)进行局部区域的下采样操作,降低了特征图的尺寸。这样可以减少后续层中的参数数量,降低计算复杂度,加速训练过程;
  • 平移不变性:池化层可以提高网络对输入图像的平移不变性。当图像中的某个特征发生小幅度平移时,池化层的输出仍然具有相似的特征表示。这有助于提高模型的泛化能力,使其能够在不同位置和尺度下识别相同的特征;
  • 防止过拟合:通过减少特征图的尺寸,池化层可以降低模型的参数数量,从而降低过拟合的风险;
  • 增强特征表达:池化操作可以聚合局部区域内的特征,从而强化和突出更重要的特征信息。常见的池化操作有最大池化(Max Pooling)和平均池化(Average Pooling),分别表示在局部区域内取最大值或平均值作为输出;

(3)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下:

...Epoch 91, cost = 0.047302, acc = 99.22%Epoch 92, cost = 0.049026, acc = 99.22%Epoch 93, cost = 0.048953, acc = 99.13%Epoch 94, cost = 0.045235, acc = 99.12%Epoch 95, cost = 0.045136, acc = 99.14%Epoch 96, cost = 0.048240, acc = 99.02%Epoch 97, cost = 0.049063, acc = 99.21%Epoch 98, cost = 0.045373, acc = 99.23%Epoch 99, cost = 0.046127, acc = 99.12%Epoch 100, cost = 0.046864, acc = 99.10%
登入後複製

可以看出最后相同的数据分类,准确率比多层感知机要高(99.10% > 98.59%)。

3、LSTMNet

LSTMNet是使用长短时记忆网络(Long Short-Term Memory, LSTM)构建的神经网络,核心思想是引入了一个名为"记忆单元"的结构,该结构可以在一定程度上保留长期依赖信息,LSTM中的每个单元包括一个输入门(input gate)、一个遗忘门(forget gate)和一个输出门(output gate),这些门的作用是控制信息在记忆单元中的流动,以便网络可以学习何时存储、更新或输出有用的信息。

import numpy as npimport torchfrom torch import optim, nnfrom data_util import load_mnistclass LSTMNet(torch.nn.Module):def __init__(self, input_dim, hidden_dim, output_dim):super(LSTMNet, self).__init__()self.hidden_dim = hidden_dimself.lstm = nn.LSTM(input_dim, hidden_dim)self.linear = nn.Linear(hidden_dim, output_dim, bias=False)def forward(self, x):batch_size = x.size()[1]h0 = torch.zeros([1, batch_size, self.hidden_dim])c0 = torch.zeros([1, batch_size, self.hidden_dim])fx, _ = self.lstm.forward(x, (h0, c0))return self.linear.forward(fx[-1])def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)train_size = len(trY)n_classes = 10seq_length = 28input_dim = 28hidden_dim = 128batch_size = 100epochs = 100trX = trX.reshape(-1, seq_length, input_dim)teX = teX.reshape(-1, seq_length, input_dim)trX = np.swapaxes(trX, 0, 1)teX = np.swapaxes(teX, 0, 1)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)model = LSTMNet(input_dim, hidden_dim, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)for i in range(epochs):cost = 0.num_batches = train_size // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[:, start:end, :], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%" %(i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()
登入後複製

(1)以上这段代码通用的部分就不解释了,具体说LSTMNet类:

  • self.lstm = nn.LSTM(input_dim, hidden_dim)创建一个LSTM层,输入维度为input_dim,隐藏层维度为hidden_dim;
  • self.linear = nn.Linear(hidden_dim, output_dim, bias=False)创建一个线性层(全连接层),输入维度为hidden_dim,输出维度为output_dim,并设置不使用偏置项(bias);
  • h0 = torch.zeros([1, batch_size, self.hidden_dim])初始化LSTM层的隐藏状态h0,全零张量,形状为[1, batch_size, hidden_dim];
  • c0 = torch.zeros([1, batch_size, self.hidden_dim])初始化LSTM层的细胞状态c0,全零张量,形状为[1, batch_size, hidden_dim];
  • fx, _ = self.lstm.forward(x, (h0, c0))将输入数据x以及初始隐藏状态h0和细胞状态c0传入LSTM层,得到LSTM层的输出fx;
  • return self.linear.forward(fx[-1])将LSTM层的输出传入线性层进行计算,得到最终输出。这里fx[-1]表示取LSTM层输出的最后一个时间步的数据;

(2)print("第%d轮,损失值=%f,准确率=%.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))。打印出当前训练轮次的信息,其中包括损失值和准确率,以上代码的输出结果如下:

Epoch 91, cost = 0.000468, acc = 98.57%Epoch 92, cost = 0.000452, acc = 98.57%Epoch 93, cost = 0.000437, acc = 98.58%Epoch 94, cost = 0.000422, acc = 98.57%Epoch 95, cost = 0.000409, acc = 98.58%Epoch 96, cost = 0.000396, acc = 98.58%Epoch 97, cost = 0.000384, acc = 98.57%Epoch 98, cost = 0.000372, acc = 98.56%Epoch 99, cost = 0.000360, acc = 98.55%Epoch 100, cost = 0.000349, acc = 98.55%
登入後複製

4、辅助代码

两篇文章的from data_util import load_mnist的data_util.py代码如下:

import gzip
import os
import urllib.request as request
from os import path
import numpy as np

DATASET_DIR = 'datasets/'
MNIST_FILES = ["train-images-idx3-ubyte.gz", "train-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz", "t10k-labels-idx1-ubyte.gz"]

def download_file(url, local_path):
    dir_path = path.dirname(local_path)
    if not path.exists(dir_path):
        print("创建目录'%s' ..." % dir_path)
        os.makedirs(dir_path)
    print("从'%s'下载中 ..." % url)
    request.urlretrieve(url, local_path)

def download_mnist(local_path):
    url_root = "http://yann.lecun.com/exdb/mnist/"
    for f_name in MNIST_FILES:
        f_path = os.path.join(local_path, f_name)
        if not path.exists(f_path):
            download_file(url_root + f_name, f_path)

def one_hot(x, n):
    if type(x) == list:
        x = np.array(x)
    x = x.flatten()
    o_h = np.zeros((len(x), n))
    o_h[np.arange(len(x)), x] = 1
    return o_h

def load_mnist(ntrain=60000, ntest=10000, notallow=True):
    data_dir = os.path.join(DATASET_DIR, 'mnist/')
    if not path.exists(data_dir):
        download_mnist(data_dir)
    else:
        # 检查所有文件
        checks = [path.exists(os.path.join(data_dir, f)) for f in MNIST_FILES]
        if not np.all(checks):
            download_mnist(data_dir)
    
    with gzip.open(os.path.join(data_dir, 'train-images-idx3-ubyte.gz')) as fd:
        buf = fd.read()
        loaded = np.frombuffer(buf, dtype=np.uint8)
        trX = loaded[16:].reshape((60000, 28 * 28)).astype(float)
    
    with gzip.open(os.path.join(data_dir, 'train-labels-idx1-ubyte.gz')) as fd:
        buf = fd.read()
        loaded = np.frombuffer(buf, dtype=np.uint8)
        trY = loaded[8:].reshape((60000))
    
    with gzip.open(os.path.join(data_dir, 't10k-images-idx3-ubyte.gz')) as fd:
        buf = fd.read()
        loaded = np.frombuffer(buf, dtype=np.uint8)
        teX = loaded[16:].reshape((10000, 28 * 28)).astype(float)
    
    with gzip.open(os.path.join(data_dir, 't10k-labels-idx1-ubyte.gz')) as fd:
        buf = fd.read()
        loaded = np.frombuffer(buf, dtype=np.uint8)
        teY = loaded[8:].reshape((10000))
    
    trX /= 255.
    teX /= 255.
    trX = trX[:ntrain]
    trY = trY[:ntrain]
    teX = teX[:ntest]
    teY = teY[:ntest]
    
    if onehot:
        trY = one_hot(trY, 10)
        teY = one_hot(teY, 10)
    else:
        trY = np.asarray(trY)
        teY = np.asarray(teY)
    
    return trX, teX, trY, teY
登入後複製


以上是機器學習|PyTorch簡明教學下篇的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

15個值得推薦的開源免費圖片標註工具 15個值得推薦的開源免費圖片標註工具 Mar 28, 2024 pm 01:21 PM

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

一文帶您了解SHAP:機器學習的模型解釋 一文帶您了解SHAP:機器學習的模型解釋 Jun 01, 2024 am 10:58 AM

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

通透!機器學習各大模型原理的深度剖析! 通透!機器學習各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

透過學習曲線辨識過擬合和欠擬合 透過學習曲線辨識過擬合和欠擬合 Apr 29, 2024 pm 06:50 PM

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

人工智慧在太空探索和人居工程中的演變 人工智慧在太空探索和人居工程中的演變 Apr 29, 2024 pm 03:25 PM

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

可解釋性人工智慧:解釋複雜的AI/ML模型 可解釋性人工智慧:解釋複雜的AI/ML模型 Jun 03, 2024 pm 10:08 PM

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 May 30, 2024 pm 01:24 PM

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,

See all articles