AI藥物研究員躋身Nature子刊:運用專業知識加速藥物研發
藥物發現是一個複雜的、多步驟的過程,涉及許多化學和生物學子學科的交叉領域。人類藥物化學家憑藉他們多年累積的專業知識在這個過程中扮演著重要的角色
那麼,人工智慧(AI)能否擔任藥物化學家在藥物發現中扮演的角色呢?答案或許是肯定的。
日前,來自諾華生物醫學研究所(NIBR)和微軟研究院科學智能中心(AI4Science)的研究團隊,共同提出了一個機器學習模型,該模型能部分重現職業化學家在工作中累積的集體知識,這類知識通常被稱為「化學直覺」。
研究小組認為,此方法可作為分子建模的補充,以提高未來藥物研發的效率
該研究論文題為“通過偏好機器學習提取藥物化學直覺”,已在《自然》子刊《自然通訊》上發表
機器學習重現藥物化學家專業知識
在藥物發現的「先導化合物優化」階段,不論是濕實驗室還是計算方面的藥物化學家,都扮演著至關重要的角色,因為他們通常被要求確定哪些化合物需要合成和在後續優化輪次中進行評估。
為了做到這一點,藥物化學家通常會審查包括活性、ADMET2 或標靶結構資訊等化合物屬性在內的數據。因此,一個專案的成功不僅依賴於產生的實驗數據的質量,而且還依賴從事藥物化學工作團隊決策的穩健性和合理性。
藥物化學家之所以能夠更有效率地做出決策,是因為他們常常藉助專業知識對早期藥物發現的不同迭代中的成功因素具有直觀的了解。
雖然之前曾嘗試過使用基於規則的方法或簡單的化學資訊學可行性評分來形式化這種知識,但要捕捉到藥物化學家評分中所涉及的微妙和複雜性依然是一個根本性的挑戰
為了實現這一目標,該研究旨在將專業知識轉化為機器學習模型的一部分。這種模型可以用作輔助工具,像其他已經在該行業中報道的推薦系統一樣,在先導化合物優化或藥物發現的其他環節中進行決策過程的部署
考慮到藥物化學目前主要依賴人工工作,不可避免地受到主觀偏見的影響。一些研究已經報告了藥物化學家之間以及藥物化學家內部評分的一致性較低。 而在本研究中,研究人員希望透過借鏡多人遊戲中的策略來解決一些問題。
他們將一組分子排名的任務視為一種偏好學習問題,然後使用簡單的神經網路來模擬個體的偏好
圖|研究主要思路的整體示意圖(資料來源:該論文)
具體來講,如上圖所示,分子被視為競技比賽中的參與者,其中一方獲勝的機率由化學家提供的回饋決定。為此,藥物化學家要在 Web 應用程式上回答預先指定的問題提示,並選擇兩種分子中的一種。在此過程中,共有 35 名諾華藥物化學家參與,最終共收集 5000 多個註釋。
這些回饋催生了一種隱式得分模型,其中採用了具有兩個獨立神經網路結構的模型。每個分支都有固定的權重,並使用常見的化學資訊學描述子對分子進行特徵化處理。在訓練期間,該模型的參數透過二元交叉熵損失(BCE損失)進行最佳化,該損失取決於分子對的潛在得分差和化學家提供的回饋
一旦訓練完成,可以推斷出任何任意分子的得分,然後可以將其用於下游化學資訊學任務。
此外,模型還能更準確地判斷不同藥物之間的相似性。研究中提出的學習評分函數比傳統的藥物相似性評估指標(QED)更精準
值得注意的是,為了促進研究的可重複性和該領域的進一步發展,研究人員還提供了一個名為「MolSkill」的軟體包,其中包含了該模型和匿名響應數據。
機器學習在藥物化學領域存在的問題與應用
#然而,儘管該模型可以重現藥物化學家在工作中累積的知識,但也存在一些限制。 首先,為捕捉化學直覺,資料收集過程中所提出的問題一直都很模糊。
另外,雖然提出的研究設計導致與先前的研究相比參與者之間的一致性更高,但成對比較方法也並不是完美的。
此外,"Flatland謬論"導致人類往往傾向於將高維問題簡化為一小組可以認知追蹤的變量,而這種簡化可能會受到每個藥物化學家個人特徵的影響
然而,研究團隊表示,本研究提出的模型不僅限於目前研究的應用範圍。 具體來說,討論的框架可以擴展到藥物發現領域的其他可量化但卻昂貴的可觀測值。此外,它可以為化學空間中尚未被探索的領域提供見解。
考慮到這一點,研究團隊相信可以透過人工生成的訓練數據,讓一些流行的基於規則的過濾器(Filter)進行學習,從而構建類似的架構。這種模型可以克服在進行推斷之前必須手動過濾化合物的主要限制
同樣的方法也可以用於優先考慮合成化學庫中的組合生成化合物評分,在這些化合物中,由於其天然新穎性難以使用現有的規則方法進行篩選
另一個需要重新表達的內容是:在前瞻性的、面向特定靶點的首要優化場景中,需要綜合考慮多個來源資訊(如生物學特性、ADMET 等),以檢驗該研究框架的實用性
研究團隊在論文中寫道:「機器學習方法可以設計成千上萬個化合物,高通量篩選等技術可以在藥物發現過程的早期階段突出顯示大量的候選化合物。本次提出的評分方法正被用於隱式地整合化學家的直覺,而無需手動檢查即可對化合物進行篩選。期望這種應用將在未來幾年內加速方法的採用和信任的提升。」
以上是AI藥物研究員躋身Nature子刊:運用專業知識加速藥物研發的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

Vibe編碼通過讓我們使用自然語言而不是無盡的代碼行創建應用程序來重塑軟件開發的世界。受Andrej Karpathy等有遠見的人的啟發,這種創新的方法使Dev

2025年2月,Generative AI又是一個改變遊戲規則的月份,為我們帶來了一些最令人期待的模型升級和開創性的新功能。從Xai的Grok 3和Anthropic的Claude 3.7十四行詩到Openai的G

Yolo(您只看一次)一直是領先的實時對象檢測框架,每次迭代都在以前的版本上改善。最新版本Yolo V12引入了進步,可顯著提高準確性

本文回顧了AI最高的藝術生成器,討論了他們的功能,對創意項目的適用性和價值。它重點介紹了Midjourney是專業人士的最佳價值,並建議使用Dall-E 2進行高質量的可定製藝術。

Chatgpt 4當前可用並廣泛使用,與諸如ChatGpt 3.5(例如ChatGpt 3.5)相比,在理解上下文和產生連貫的響應方面取得了重大改進。未來的發展可能包括更多個性化的間

本文討論了AI模型超過Chatgpt,例如Lamda,Llama和Grok,突出了它們在準確性,理解和行業影響方面的優勢。(159個字符)

MISTRAL OCR:通過多模式文檔理解徹底改變檢索效果 檢索增強的生成(RAG)系統具有明顯高級的AI功能,從而可以訪問大量的數據存儲,以獲得更明智的響應

文章討論了Grammarly,Jasper,Copy.ai,Writesonic和Rytr等AI最高的寫作助手,重點介紹了其獨特的內容創建功能。它認為Jasper在SEO優化方面表現出色,而AI工具有助於保持音調的組成
