目錄
組合提示策略,「變身」專家
#動態少樣本選擇
自生成思維鏈
選項洗牌整合
多項測試最優
首頁 科技週邊 人工智慧 微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

Dec 04, 2023 pm 02:25 PM
數據 模型

微軟最新研究再次證明了提示工程的威力——

無需額外微調,無需專家策劃,僅憑提示,GPT-4就能化身「專家」。

使用他們提出的最新提示策略Medprompt,在醫療專業領域,GPT-4在MultiMed QA九個測試集中取得最佳結果。

在MedQA資料集(美國醫師執照考試題)上,Medprompt讓GPT-4的準確率首次超過90%超越BioGPT和Med-PaLM等一眾微調方法。

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

研究人員也表示Medprompt方法是通用的,不僅適用於醫學,還可以推廣到電機工程、機器學習、法律等專業。

這項研究在X(原Twitter)一分享,就引發許多網友關注。

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

華頓商學院教授Ethan Mollick、Artificial Intuition作者Carlos E. Perez等都有轉寄分享。

Carlos E. Perez直呼「出色的提示策略可以甩微調一大截」:

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

有一些網友表示早就有這種預感,現在能看到結果出來,真的太酷了!

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

有些網友認為這真的很「激進」

GPT-4是一項能改變產業的技術,而我們還遠沒有觸及提示的極限,也未達微調極限。

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

組合提示策略,「變身」專家

Medprompt是多種提示策略的組合體,包含三大法寶:

  • 動態少樣本選擇(Dynamic few-shot selection)
  • 自生成思維鏈(Self-generated chain of thought)
  • 選項洗牌整合(Choice shuffling ensemble )

接下來,我們將逐一介紹

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

#動態少樣本選擇

少樣本學習是讓模型快速學習情境的一種有效的方法。簡單來說,就是輸入一些範例,讓模型快速適應特定領域,並學習遵循任務的格式。

這種用於特定任務提示的少樣本範例通常是固定的,所以對範例的代表性和廣泛性有較高的要求。

之前一種方法是讓領域專家手動製作範例,但即便如此,也不能保證專家策劃的固定的少樣本範例在每個任務中都有代表性。

微軟研究人員提出了一種動態少樣本範例的方法,因此

想法是,任務訓練集可以作為少樣本範例的來源,如果訓練集足夠大,那就可以為不同的任務輸入選擇不同的少樣本範例。

在特定操作上,研究人員首先使用text-embedding-ada-002模型為每個訓練樣本和測試樣本產生向量表示。然後,針對每個測試樣本,透過比較向量的相似度,從訓練樣本中選擇出與之最相似的k個樣本

與微調方法相比,動態少樣本選擇利用了訓練數據,但不需要對模型參數進行大量更新。

自生成思維鏈

思考鏈(CoT)方法是一種讓模型逐步思考並產生一系列中間推理步驟的方法

以前的方法是依靠專家手動編寫一些帶有提示思維鏈的範例

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

在這裡,研究人員發現,可以簡單地要求GPT-4使用以下提示為訓練範例產生思維鏈:

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

但研究人員也指出這種自動生成的思維鏈可能包含錯誤的推理步驟,於是設置了一個驗證標籤作為過濾器,可以有效減少錯誤。

與在Med-PaLM 2模型中專家手工製作的思維鏈範例相比,GPT-4產生的思維鏈基本原理更長,而且逐步推理邏輯更細粒度。

選項洗牌整合

GPT-4在處理選擇題時可能存在一種偏見,即無論選項的內容是什麼,它傾向於總是選擇A或總是選擇B ,這就是位置偏差

為了解決這個問題,研究人員決定對原有的選項進行順序重排,以減少影響。例如,原本的選項順序為ABCD,可以改為BCDA、CDAB等

然後讓GPT-4做多輪預測,每輪使用選項的一個不同排列順序。如此一來「迫使」GPT-4考慮選項的內容。

最後對多輪預測結果做個投票,選擇最一致、正確的選項。

將以上幾個提示策略組合在一起就是Medprompt,以下來看測試結果。

多項測試最優

在測試中,研究人員採用了MultiMed QA評估基準。

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

使用Medprompt提示策略的GPT-4,在MultiMedQA的九個基準資料集中均取得最高分,優於Flan-PaLM 540B、Med-PaLM 2。

此外,研究人員也討論了Medprompt策略在「Eyes-Off」資料上的表現。所謂「Eyes-Off」數據,指的是模型在訓練或優化過程中未曾見過的數據,用於檢驗模型是否過度擬合訓練數據

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

結果GPT-4結合Medprompt策略在多個醫學基準資料集上表現出色,平均準確率達到了91.3%。

研究人員對MedQA資料集進行了消融實驗,以探索三個組件對整體表現的相對貢獻

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

在其中,自動產生思維鏈步驟對於效能的提升起著最大的作用

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

GPT-4自動產生的思維鏈分數比Med-PaLM 2中專家策劃的得分更高,且不需要人工幹預

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

最後,研究人員也探討了Medprompt的跨域泛化能力,取用了MMLU基準中的六個不同的資料集,涵蓋了電機工程、機器學習、哲學、專業會計、專業法律和專業心理學的問題。

也增加了另外兩個包含NCLEX(美國護理師執照考試)問題的資料集。

結果顯示,Medprompt在這些資料集上的效果與在MultiMedQA醫學資料集上的提升幅度相近,平均準確率提高了7.3%。

微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%

請點選以下連結查看論文:https://arxiv.org/pdf/2311.16452.pdf

以上是微軟僅憑「提示工程」讓GPT-4成醫學專家!超過一眾高度微調模型,專業測試準確率首次超90%的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

iPhone上的蜂窩數據網路速度慢:修復 iPhone上的蜂窩數據網路速度慢:修復 May 03, 2024 pm 09:01 PM

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 超級智能體生命力覺醒!可自我更新的AI來了,媽媽再也不用擔心資料瓶頸難題 Apr 29, 2024 pm 06:55 PM

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

See all articles