智源等機構發布LM-Cocktail模型的多技能大模型治理策略
隨著大模型技術的發展與落地,「模型治理」成為了目前受到重點關注的命題。只不過,在實務中,研究者往往感受到多重挑戰。
一方面,為了高其在目標任務的表現表現,研究者會收集並建構目標任務資料集並對大語言模型(LLM)進行微調,但這種方式通常會導致目標任務以外的一般任務的表現明顯下降,損害LLM 原本具備的通用能力。
另一方面,開源社群的模型逐漸增多,大模型開發者也可能在多次訓練中累積了越來越多的模型,每個模型都具有各自的優勢,如何選擇合適的模型執行任務或進一步微調反而成為一個問題。
近日,智源研究院資訊檢索與知識計算組發布 LM-Cocktail 模型治理策略,旨在為大模型開發者提供一個低成本持續提升模型效能的方式:透過少量範例計算融合權重,借助模型融合技術融合微調模型與原模型的優勢,實現「模型資源」的高效利用。
- #技術報告:https://arxiv.org/abs/2311.13534
- #程式碼:https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail
模型融合技術可以透過融合多個模型提高單模型的性能。受此啟發,LM-Cocktail 策略進一步透過對目標任務計算不同模型的重要性,賦予不同模型不同的權重,在此基礎上進行模型融合,在提升目標任務上性能的同時,保持在通用任務上的強大能力。
LM-Cocktail 策略的作用類似於製作雞尾酒,它可以將各個模型的優勢能力匯總起來,透過調配不同的模型,創造出一個擁有多種專長的「多才」模型
方法創新
具體而言,LM-Cocktail 可以透過手動選擇模型配比,或輸入少量樣例自動計算加權權重,來融合現有模型產生一個新模型,該過程不需要對模型進行重新訓練並且具備適配多種結構的模型,如大語言模型Llama,語義向量模型BGE 等。
如果開發者缺乏某些目標任務的標籤數據,或者缺少計算資源進行模型微調,那麼可以採用LM-Cocktail策略來省去模型微調的步驟。只要建構極少量的資料範例,就可以融合開源社群中已有的大型語言模型,以調製自己的「LM雞尾酒」
##如上圖所示,在特定目標任務上微調Llama,可以顯著提高目標任務上的準確度,但損害了在其他任務上的通用能力。採用 LM-Cocktail 可以解決這個問題。
LM-Cocktail 的核心是將微調後的模型與多個其他模型的參數進行融合,整合多個模型的優點,在提高目標任務上準確度的同時,保持在其他任務上的通用能力。具體形式為,給定目標任務、基礎模型,以及一個在該任務上微調基礎模型後所得到的模型,同時收集開源社群或以往訓練過的模型組成集合。透過目標任務上少量的範例計算每個模型的融合加權權重,對這些模型的參數進行加權求和,得到新的模型(具體的過程請參考論文或開源程式碼)。如果開源社群不存在其他模型,也可以直接整合基礎模型和微調模型,在不降低通用能力的基礎上提升下游任務表現。 使用者在實際應用場景中,由於資料和資源的限制,可能無法進行下游任務的微調,即沒有在目標任務微調過後的模型。在這種情況下,使用者可以透過建構非常少量的資料範例融合社群中已有的大語言模型,產生一個面向新任務的模型,提高目標任務的準確度,而無需對模型進行訓練。
#########實驗結果###############1.彈性微調以維持通用能力#########從上圖中可以看到,在某個目標任務上進行微調之後,微調後的模型大幅提高了在該任務上的準確度,但其他通用任務上的準確度都有下降。例如,在 AG News 到訓練集上進行微調,Llama 在 AG News 測試集上準確度從 40.80% 漲到 94.42%,但在其他任務上準確度從 46.80% 下降到了 38.58%。
然而,透過簡單的融合微調後模型和原始模型的參數,在目標任務上實現了具有競爭力的性能94.46%,與微調模型相當,同時在其他任務上準確度為47.73%, 甚至稍強於原模型的性能。在某些任務下,如Helleswag, 融合後的模型甚至可以在該微調任務上超過微調後的模型,並在其他任務上超過原始通用模型,即在繼承微調模型和原模型的優點的同時,超過了他們。可以看出,透過 LM-Cocktail 計算融合比例,進一步融合其他微調模型,可以在確保目標任務準確度的同時,進一步提昇在其他任務上的通用效能。
2. 混合已有模型處理新任務
重寫後來的內容:圖表展示了語言模型目標任務MMLU
#重寫後的內容:圖片:向量模型的目標任務是檢索(訊息檢索)
微調模型需要大量的數據,同時需要大量的運算資源,尤其是微調大語言模型,這些在實際情況中不一定可以實現。在無法對目標任務進行微調的情況下,LM- Cocktail 可以透過混合現有的模型(來自開源社群或自己歷史訓練累積)來實現新的能力。
透過只給定5 個樣例數據,LM-Cocktail 自動計算融合加權權重,從現有的模型進行篩選然後融合得到新的模型,而無需使用大量數據進行訓練。實驗發現,產生的新模型可以在新的任務上得到更高的準確度。例如,對於 Llama,透過 LM- Cocktail 整合現有 10 個模型(其訓練任務都與 MMLU 榜單無關),可以取得明顯的提升,並且要高於使用 5 個範例資料進行情境學習的 Llama 模型。
請嘗試使用LM-Cocktail,我們歡迎您透過GitHub issue提供回饋與建議:https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail
以上是智源等機構發布LM-Cocktail模型的多技能大模型治理策略的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP
