目錄
1、背景
2、整体结构
3、Adaptor设计
4、实验效果
首頁 科技週邊 人工智慧 基於Adaptor和GPT的時間序列多任務一體化大型模型

基於Adaptor和GPT的時間序列多任務一體化大型模型

Dec 15, 2023 pm 01:03 PM
gpt 模型 時間序列

今天跟大家聊一聊大模型时间序列预测的最新工作,来自阿里巴巴达摩院,提出了一种基于adaptor的通用时间序列分析框架,在长周期预测、短周期预测、zero-shot、few-shot、异常检测、时间序列分类、时间序列填充等7项时间序列任务上都取得了显著的效果。

基於Adaptor和GPT的時間序列多任務一體化大型模型

论文标题:一刀切:使用预训练语言模型和特别设计的适配器进行通用时间序列分析

可下载链接:https://arxiv.org/pdf/2311.14782v1.pdf

1、背景

时间序列预测领域中,搭建大型模型的难点之一在于缺乏如NLP或CV领域那样的充足的训练数据。本文提出了一种解决方案,即以NLP或CV领域中训练好的大型模型为基础,并结合Adaptor技术,将其适配到时间序列中,以解决各种时间序列问题

Adaptor在NLP、CV等领域应用很广泛,尤其是最近大模型应用中,adaptor经常被用来进行大模型的轻量级finetune。Adaptor是一个轻量级网络,通过将其插入到大模型中的一些模块中,然后fix大模型参数,只更新adaptor的参数,就可以实现轻量级的大模型finetune。

基於Adaptor和GPT的時間序列多任務一體化大型模型图片

下面,给大家介绍阿里达摩院这篇工作中,是如何利用adaptor结合预训练的NLP、CV模型搭建统一时间序列模型的。

2、整体结构

本文提出的模型基于Freeze参数的预训练语言模型,结合4种类型的adaptor实现。整体模型结构如下图所示。

基於Adaptor和GPT的時間序列多任務一體化大型模型图片

首先,对于输入的时间序列,我们将使用RevIN的方法进行归一化。这意味着我们会从每个时间序列中减去均值,并除以方差。接下来,我们将使用PatchTST的方法,将时间序列通过滑动窗口切分成多个片段,生成片段嵌入。处理好的时间序列将被输入到一个NLP领域的预训练语言模型中。在整个训练过程中,语言模型的原始参数将保持不变,我们只会更新新增的4类适配器参数

3、Adaptor设计

本文介绍了四种类型的适配器,这些适配器可以插入到NLP和CV领域的大型模型的不同位置,以实现对时间序列进行适配的目标。这四种适配器分别是时间适配器、通道适配器、频率适配器和异常适配器

时间适配器:时间适配器是一个MLP网络,用于融合时间维度的信息。在文中,我们采用了瓶颈结构,先将时间维度或空间维度的高维信息映射到低维空间,然后再映射回高维空间。这样做的目的是在提取时序关系的过程中避免过拟合的风险

Channel Adaptor:channel adaptor的结构和temporal adaptor相似,区别在于在空间维度进行,用来提取多元序列各个变量之间的关系,也采用了bottlenect;

基於Adaptor和GPT的時間序列多任務一體化大型模型图片

Frequency Adaptor:frequency adaptor在频域进行时间序列的信息提取,这部分将时间序列映射到频域,在频域做MLP,然后再映射回时域,以此实现频域这种全局信息的提取。

Anomaly Adapter:这部分主要是实现了一种新的时间序列异常检测方法,这里利用了attention score矩阵,对于正常序列attention score矩阵呈现周期重复的特性,而异常序列则没有,因此文中使用一个高斯核作为anomaly adaptor,用attention的输出结果和其计算KL散度进行时间序列异常检测。

基於Adaptor和GPT的時間序列多任務一體化大型模型图片

另外,不同的数据会受到各个适配器的影响程度不同,因此,在文中采用了一个门控网络,以有选择地使用适配器

4、实验效果

对7种时间序列任务进行了效果对比,本文提出的时间序列统一大模型在各个任务中取得了超出业内各个SOTA模型的效果。以长周期预测任务为例,基于GPT2 Adaptor的统一模型表现最优

基於Adaptor和GPT的時間序列多任務一體化大型模型圖片

#

以上是基於Adaptor和GPT的時間序列多任務一體化大型模型的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1253
24
全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Google狂喜:JAX性能超越Pytorch、TensorFlow!或成GPU推理訓練最快選擇 Apr 01, 2024 pm 07:46 PM

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

用於時間序列機率預測的分位數迴歸 用於時間序列機率預測的分位數迴歸 May 07, 2024 pm 05:04 PM

不要改變原內容的意思,微調內容,重寫內容,不要續寫。 「分位數迴歸滿足此需求,提供具有量化機會的預測區間。它是一種統計技術,用於模擬預測變數與反應變數之間的關係,特別是當反應變數的條件分佈命令人感興趣時。 ⼀組迴歸變數X與被解釋變數Y的分位數之間線性關係的建模⽅法。現有的迴歸模型其實是研究被解釋變數與解釋變數之間關係的一種方法。他們關註解釋變數與被解釋變數之間的關

DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! DualBEV:大幅超越BEVFormer、BEVDet4D,開卷! Mar 21, 2024 pm 05:21 PM

這篇論文探討了在自動駕駛中,從不同視角(如透視圖和鳥瞰圖)準確檢測物體的問題,特別是如何有效地從透視圖(PV)到鳥瞰圖(BEV)空間轉換特徵,這一轉換是透過視覺轉換(VT)模組實施的。現有的方法大致分為兩種策略:2D到3D和3D到2D轉換。 2D到3D的方法透過預測深度機率來提升密集的2D特徵,但深度預測的固有不確定性,尤其是在遠處區域,可能會引入不準確性。而3D到2D的方法通常使用3D查詢來採樣2D特徵,並透過Transformer學習3D和2D特徵之間對應關係的注意力權重,這增加了計算和部署的

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

See all articles