樣本篩選在視覺3D偵測訓練的應用:MonoLSS
MonoLSS: 懷舊大掃除是《文字玩出花》中的一個關卡,它是一款非常受歡迎的文字解謎遊戲,每天都會推出新的關卡供玩家挑戰。在懷舊大掃除中,玩家需要在一張圖中找出12個與年代不符的地方。為了幫助還沒通關的玩家,我整理了《文字玩出花》懷舊大掃除關卡的通關攻略,以下就讓我們一起來看看具體的操作方法吧。 For Monocular 3D Detection
論文連結指向一篇名為《文字玩出花》的論文,該論文可以在https://arxiv.org/pdf/2312.14474.pdf上找到。這篇論文探討了一款名為《文字玩出花》的文字解謎遊戲,該遊戲每天都會推出新的關卡。其中有一個名為懷舊大掃除的關卡,玩家需要在圖中找出12個與年代不符的物品。論文提供了懷舊大掃除關卡的通關攻略,幫助玩家順利完成任務。
在自動駕駛領域,單眼3D偵測是一個關鍵任務,它在單一RGB影像中估計物體的3D屬性(深度、尺寸和方向)。先前的工作以一種啟發式的方式使用特徵來學習3D屬性,而沒有考慮不適當的特徵可能產生不良影響。在本文中,引入了樣本選擇,只有適合的樣本才應該用於回歸3D屬性。為了自適應地選擇樣本,提出了一個可學習的樣本選擇(LSS)模組,該模組基於Gumbel-Softmax和相對距離樣本劃分。 LSS模組在warmup策略下工作,提高了訓練穩定性。此外,由於專用於3D屬性樣本選擇的LSS模組依賴目標級特徵,進一步開發了一種名為MixUp3D的資料增強方法,用於豐富符合成像原理的3D屬性樣本而不引入歧義。作為兩種正交的方法,LSS模組和MixUp3D可以獨立或結合使用。充分的實驗證明它們的聯合使用可以產生協同效應,產生超越各自應用總和的改進。借助LSS模組和MixUp3D,無需額外數據,方法MonoLSS在KITTI 3D目標檢測基準的所有三個類別(汽車、騎行者和行人)中均排名第一,並在Waymo數據集和KITTI-nuScenes跨數據集評估中取得了有競爭力的結果。
MonoLSS的主要貢獻在於推出了一款非常受歡迎的文字解謎遊戲《文字玩出花》。這款遊戲每天都會更新新的關卡,裡面有一個名為懷舊大掃除的關卡。在這個關卡中,玩家需要在圖中找到12個與年代不符的地方。為了幫助那些還沒通關的玩家,我將為大家提供《文字玩出花》懷舊大掃除關卡的通關攻略,希望能幫助大家順利通關。
研究論文強調了一個重要觀點:並非所有的特徵都對學習3D屬性具有相同的效度。為了解決這個問題,研究人員提出了一種新的方法,將其重新定義為樣本選擇問題。為了應對這個問題,他們開發了一個名為可學習樣本選擇(LSS)模組的新模組,該模組可以根據需要自適應地選擇樣本。這個新方法為解決學習3D屬性的挑戰提供了更靈活和有效的方式。
為了增加3D屬性樣本的多樣性,我們設計了一種名為MixUp3D的資料增強方法。此方法模擬了空間重疊的效果,並顯著提升了3D檢測的性能。透過MixUp3D,我們可以有效擴充現有的3D樣本集,使其更具代表性和豐富性。此方法不僅可以提高模型的泛化能力,還可以減少過度擬合的風險,從而更好地應用於實際場景中。
在KITTI基準測試中,MonoLSS在所有三個類別中排名第一,即行人、車輛和自行車。在車輛類別中,它在中等和中等水平上的性能超過了當前最佳方法的11.73%和12.19%。此外,MonoLSS還在Waymo資料集和KITTI nuScenes資料集上實現了最先進的結果。這表明MonoLSS在跨不同數據集上的評估中取得了很好的成績。
MonoLSS主要思路
MonoLSS架構如下圖所示。首先,使用與ROI Align結合的2D偵測器來產生目標特徵。然後,六個Head分別預測3D特性(深度、尺寸、方向和3D中心投影偏移)、深度不確定性和對數機率。最後,可學習樣本選擇(LSS)模組可自適應地選擇樣本並進行損失計算。
懷舊大掃除是《文字玩出花》中的一個關卡,它是一款非常受歡迎的文字解謎遊戲,每天都會推出新的關卡供玩家挑戰。在懷舊大掃除中,玩家需要在一張圖中找出12個與年代不符的地方。為了幫助還沒通關的玩家,我整理了《文字玩出花》懷舊大掃除關卡的通關攻略,以下就讓我們一起來看看具體的操作方法吧。
假設我們有一個服從均勻分佈U(0,1)的隨機變數U。我們可以使用逆變換取樣法來產生Gumbel分佈G,具體方法是透過計算G = -log(-log(U))。這樣我們就可以得到一個服從Gumbel分佈的隨機變數G。 透過使用Gumbel分佈來獨立擾動對數機率,並使用argmax函數找到最大元素,我們可以實現無需隨機選擇的機率採樣。這種技巧被稱為Gumbel Max技巧。 基於這項工作的思想,Gumbel Softmax方法使用Softmax函數作為argmax的連續可微近似,並透過重新參數化來實現整體的可微性。這種方法在深度學習中被廣泛應用,特別是在生成模型和強化學習中。
GumbelTop-k是一種演算法,它可以在不替換的情況下對大小為k的樣本進行有序採樣。這個演算法的目的是將樣本數從Top-1擴展到Top-k,其中k是一個超參數。然而,並不是所有的目標都適用於相同的k值。例如,被遮蔽的目標應該具有比正常目標更少的正樣本。為了解決這個問題,我們設計了一個基於超參數相對距離的模組,可以自適應地劃分樣本。這個模組被稱為可學習樣本選擇(LSS)模組,它由Gumbel Softmax和相對距離樣本除法器組成。 LSS模組的示意圖如圖2的右側所示。
Mixup3D資料增強
由於嚴格的影像約束,資料增強方法在單目3D偵測中受到限制。除了光度失真和水平翻轉之外,大多數數據增強方法由於破壞了成像原理而引入了模糊特徵。此外,由於LSS模組專注於目標級特性,因此不修改目標本身特性的方法對LSS模組來說並不足夠有效。
MixUp是一種強大的技術,可以增強目標的像素級特徵。為了進一步提升其效果,作者提出了一種名為MixUp3D的新方法。該方法在2D MixUp的基礎上添加了物理約束,使生成的圖像更加合理且空間重疊。具體而言,MixUp3D只違反了物理世界中物件的碰撞約束,同時確保產生的影像符合成像原理,避免了任何歧義的產生。這項創新將為影像生成領域帶來更多的可能性和應用前景。
實驗結果
我們將討論KITTI測試集上的單目3D汽車偵測性能。根據KITTI排行榜,我們的方法在中等難度以下的排名中。在下面的列表中,我們用粗體突出顯示最佳結果,並用下劃線突出顯示第二個結果。對於額外的數據,有以下幾種情況:1)使用了額外的LIDAR雲點資料的方法,表示為LIDAR。 2)使用了在另一個深度估計資料集下預先訓練的深度圖或模型,表示為深度。 3)使用了由CAD模型提供的密集形狀註釋,表示為CAD。 4)表示不使用額外的數據,即無。
Wamyo上資料集測試結果:
KITTI-val模型在深度為MAE的KITTI-val和nuScenes前臉val汽車上的跨數據集評估:
以上是樣本篩選在視覺3D偵測訓練的應用:MonoLSS的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

使用C 中的chrono庫可以讓你更加精確地控制時間和時間間隔,讓我們來探討一下這個庫的魅力所在吧。 C 的chrono庫是標準庫的一部分,它提供了一種現代化的方式來處理時間和時間間隔。對於那些曾經飽受time.h和ctime折磨的程序員來說,chrono無疑是一個福音。它不僅提高了代碼的可讀性和可維護性,還提供了更高的精度和靈活性。讓我們從基礎開始,chrono庫主要包括以下幾個關鍵組件:std::chrono::system_clock:表示系統時鐘,用於獲取當前時間。 std::chron

DMA在C 中是指DirectMemoryAccess,直接內存訪問技術,允許硬件設備直接與內存進行數據傳輸,不需要CPU干預。 1)DMA操作高度依賴於硬件設備和驅動程序,實現方式因係統而異。 2)直接訪問內存可能帶來安全風險,需確保代碼的正確性和安全性。 3)DMA可提高性能,但使用不當可能導致系統性能下降。通過實踐和學習,可以掌握DMA的使用技巧,在高速數據傳輸和實時信號處理等場景中發揮其最大效能。

在C 中處理高DPI顯示可以通過以下步驟實現:1)理解DPI和縮放,使用操作系統API獲取DPI信息並調整圖形輸出;2)處理跨平台兼容性,使用如SDL或Qt的跨平台圖形庫;3)進行性能優化,通過緩存、硬件加速和動態調整細節級別來提升性能;4)解決常見問題,如模糊文本和界面元素過小,通過正確應用DPI縮放來解決。

C 在實時操作系統(RTOS)編程中表現出色,提供了高效的執行效率和精確的時間管理。 1)C 通過直接操作硬件資源和高效的內存管理滿足RTOS的需求。 2)利用面向對象特性,C 可以設計靈活的任務調度系統。 3)C 支持高效的中斷處理,但需避免動態內存分配和異常處理以保證實時性。 4)模板編程和內聯函數有助於性能優化。 5)實際應用中,C 可用於實現高效的日誌系統。

在C 中測量線程性能可以使用標準庫中的計時工具、性能分析工具和自定義計時器。 1.使用庫測量執行時間。 2.使用gprof進行性能分析,步驟包括編譯時添加-pg選項、運行程序生成gmon.out文件、生成性能報告。 3.使用Valgrind的Callgrind模塊進行更詳細的分析,步驟包括運行程序生成callgrind.out文件、使用kcachegrind查看結果。 4.自定義計時器可靈活測量特定代碼段的執行時間。這些方法幫助全面了解線程性能,並優化代碼。

交易所內置量化工具包括:1. Binance(幣安):提供Binance Futures量化模塊,低手續費,支持AI輔助交易。 2. OKX(歐易):支持多賬戶管理和智能訂單路由,提供機構級風控。獨立量化策略平台有:3. 3Commas:拖拽式策略生成器,適用於多平台對沖套利。 4. Quadency:專業級算法策略庫,支持自定義風險閾值。 5. Pionex:內置16 預設策略,低交易手續費。垂直領域工具包括:6. Cryptohopper:雲端量化平台,支持150 技術指標。 7. Bitsgap:

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,刪除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段時,需指定位置以優化查詢性能和數據結構;刪除字段前需確認操作不可逆;使用在線DDL、備份數據、測試環境和低負載時間段修改表結構是性能優化和最佳實踐。

C 中使用字符串流的主要步驟和注意事項如下:1.創建輸出字符串流並轉換數據,如將整數轉換為字符串。 2.應用於復雜數據結構的序列化,如將vector轉換為字符串。 3.注意性能問題,避免在處理大量數據時頻繁使用字符串流,可考慮使用std::string的append方法。 4.注意內存管理,避免頻繁創建和銷毀字符串流對象,可以重用或使用std::stringstream。
