TRIBE實現領域適應的穩健性,在多真實場景下達到SOTA的AAAII 2024
#測試資料流應為時變分佈(而非傳統領域適應中的固定分佈) 測試資料流可能存在局部類別相關性(而非完全獨立同分佈取樣) 測試資料流在較長時間裡仍表現全域類別不平衡
#深度神經網路的成功取決於將訓練好的模型推廣到i.i.d. 測試域的假設。然而,在實際應用中,分佈外測試資料的穩健性,如不同的照明條件或惡劣天氣造成的視覺損壞,是一個需要關注的問題。最近的研究顯示,這種資料損失可能會嚴重影響預先訓練好的模型的表現。重要的是,在部署前,測試資料的損壞(分佈)通常是未知的,有時也不可預測。
因此,調整預訓練模型以適應推理階段的測試資料分佈是一個值得價值的新課題,即測試時領域適 (TTA)。先前,TTA 主要透過分佈對齊 (TTAC , TTT ),自監督訓練 (AdaContrast) 和自訓練 (Conjugate PL) 來實現,這些方法在多種視覺損壞測試資料中都帶來了顯著的穩健提升。
現有的測試時領域適應(TTA)方法通常基於一些嚴格的測試資料假設,如穩定的類別分佈、樣本服從獨立同分佈取樣以及固定的領域偏移。這些假設啟發了許多研究者去探討真實世界中的測驗資料流,如 CoTTA、NOTE、SAR 和 RoTTA 等。
最近,對真實世界的 TTA 研究,如 SAR(ICLR 2023)和 RoTTA(CVPR 2023)主要關注局部類別不平衡和連續的領域偏移對 TTA 帶來的挑戰。局部類別不平衡通常是由於測試資料並非獨立同分佈採樣而產生的。直接不加區分的領域適應將導致有偏壓的分佈估計。
最近有研究提出了指數式更新批次統計量(RoTTA)或實例層級判別更新批次統計量(NOTE)來解決這個挑戰。其研究目標是超越局部類別不平衡的挑戰,考慮到測試資料的整體分佈可能嚴重失衡,類別的分佈也可能隨著時間的推移而變化。在下圖 1 可以看到更具挑戰性的場景示意圖。
隨著時間的推移,領域轉移在現實世界的測試數據中經常發生,例如照明 / 天氣條件的逐漸變化。這給現有的 TTA 方法帶來了另一個挑戰,TTA 模型可能會因為過度適應到領域 A 而當從領域 A 切換到領域 B 時出現矛盾。
為了緩解過度適應到某個短時領域,CoTTA 隨機還原參數,EATA 用 fisher information 對參數進行正規化約束。儘管如此,這些方法仍然沒有明確解決測試資料領域中層出不窮的挑戰。
本文在兩分支自訓練架構的基礎上引入了一個錨定網路(Anchor Network)組成三網路自訓練模型(Tri-Net Self-Training)。錨定網路是一個凍結的來源模型,但允許透過測試樣本調整批歸一化層中的統計量而非參數。並提出了一個錨定損失利用錨定網路的輸出來正則化教師模型的輸出以避免網路過度適應到局部分佈。
最終模型結合了三網絡自訓練模型和平衡的批歸一化層(TRI-net self-training with BalancEd normalization, TRIBE)在較為寬泛的的可調節學習率的範圍裡表現出一致的優越性能。在四個資料集和多種真實世界資料流中顯示了大幅效能提升,展現了獨一檔的穩定性和穩健性。
-
#介紹真實世界下的TTA 協定; 平衡的批次歸一化; 三網路自訓練模型。


下圖展示了TRIBE 網路的框架圖:
以上是TRIBE實現領域適應的穩健性,在多真實場景下達到SOTA的AAAII 2024的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

同樣是圖生視頻,PaintsUndo走出了不一樣的路線。 ControlNet作者LvminZhang又開始整活了!這次瞄準繪畫領域。新項目PaintsUndo剛上線不久,就收穫1.4kstar(還在瘋狂漲)。項目地址:https://github.com/lllyasviel/Paints-UNDO透過這個項目,用戶輸入一張靜態圖像,PaintsUndo就能自動幫你生成整個繪畫的全過程視頻,從線稿到成品都有跡可循。繪製過程,線條變化多端甚是神奇,最終視頻結果和原始圖像非常相似:我們再來看一個完整的繪

AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com這篇論文的作者皆來自伊利諾大學香檳分校(UIUC)張令明老師團隊,包括:StevenXia,四年級博士生,研究方向是基於AI大模型的自動代碼修復;鄧茵琳,四年級博士生,研究方

AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com在人工智慧領域的發展過程中,對大語言模型(LLM)的控制與指導始終是核心挑戰之一,旨在確保這些模型既強大又安全地服務人類社會。早期的努力集中在透過人類回饋的強化學習方法(RL

乾杯!當論文討論細緻到詞句,是什麼體驗?最近,史丹佛大學的學生針對arXiv論文創建了一個開放討論論壇——alphaXiv,可以直接在任何arXiv論文之上發布問題和評論。網站連結:https://alphaxiv.org/其實不需要專門訪問這個網站,只需將任何URL中的arXiv更改為alphaXiv就可以直接在alphaXiv論壇上打開相應論文:可以精準定位到論文中的段落、句子:右側討論區,使用者可以發表問題詢問作者論文想法、細節,例如:也可以針對論文內容發表評論,例如:「給出至

如果AI模型給的答案一點也看不懂,你敢用嗎?隨著機器學習系統在更重要的領域中得到應用,證明為什麼我們可以信任它們的輸出,並明確何時不應信任它們,變得越來越重要。獲得對複雜系統輸出結果信任的一個可行方法是,要求系統對其輸出產生一種解釋,這種解釋對人類或另一個受信任的系統來說是可讀的,即可以完全理解以至於任何可能的錯誤都可以被發現。例如,為了建立對司法系統的信任,我們要求法院提供清晰易讀的書面意見,解釋並支持其決策。對於大型語言模型來說,我們也可以採用類似的方法。不過,在採用這種方法時,確保語言模型生

最近,被稱為千禧年七大難題之一的黎曼猜想迎來了新突破。黎曼猜想是數學中一個非常重要的未解決問題,與素數分佈的精確性質有關(素數是那些只能被1和自身整除的數字,它們在數論中扮演著基礎性的角色)。在當今的數學文獻中,已有超過一千個數學命題以黎曼猜想(或其推廣形式)的成立為前提。也就是說,黎曼猜想及其推廣形式一旦被證明,這一千多個命題將被確立為定理,對數學領域產生深遠的影響;而如果黎曼猜想被證明是錯誤的,那麼這些命題中的一部分也將隨之失去其有效性。新的突破來自MIT數學教授LarryGuth和牛津大學

語言模型真的能用於時序預測嗎?根據貝特里奇頭條定律(任何以問號結尾的新聞標題,都能夠用「不」來回答),答案應該是否定的。事實似乎也果然如此:強大如斯的LLM並不能很好地處理時序資料。時序,即時間序列,顧名思義,是指一組依照時間發生先後順序排列的資料點序列。在許多領域,時序分析都很關鍵,包括疾病傳播預測、零售分析、醫療和金融。在時序分析領域,近期不少研究者都在研究如何使用大型語言模型(LLM)來分類、預測和偵測時間序列中的異常。這些論文假設擅長處理文本中順序依賴關係的語言模型也能泛化用於時間序

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com。引言近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的MLLM由众所周知的Transformer网络构成,这种网
