MySQL Cluster 7.3.6 Released_MySQL
The binary and source versions of MySQL Cluster 7.3.6 have now been made available at http://www.mysql.com/downloads/cluster/ .
Release notes
MySQL Cluster NDB 7.3.6 is a new release of MySQL Cluster, based
on MySQL Server 5.6 and including features from version 7.3 of the
NDB storage engine, as well as fixing a number of recently
discovered bugs in previous MySQL Cluster releases.
Obtaining MySQL Cluster NDB 7.3. MySQL Cluster NDB 7.3 source
code and binaries can be obtained from
http://dev.mysql.com/downloads/cluster/ .
For an overview of changes made in MySQL Cluster NDB 7.3, see
MySQL Cluster Development in MySQL Cluster NDB 7.3
( http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-development-5-6-ndb-7-3.html ).
This release also incorporates all bugfixes and changes made in
previous MySQL Cluster releases, as well as all bugfixes and
feature changes which were added in mainline MySQL 5.6 through
MySQL 5.6.19 (see Changes in MySQL 5.6.19 (2014-05-30)
( http://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-19.html )).
Functionality Added or Changed
-
Cluster API: Added as an aid to debugging the ability to
specify a human-readable name for a given Ndb object and later
to retrieve it. These operations are implemented,
respectively, as the setNdbObjectName() and getNdbObjectName()
methods.
To make tracing of event handling between a user application
and NDB easier, you can use the reference (from getReference()
followed by the name (if provided) in printouts; the reference
ties together the application Ndb object, the event buffer,
and the NDB storage engine’s SUMA block. (Bug #18419907)
Bugs Fixed
- Cluster API: When two tables had different foreign keys with
the same name, ndb_restore considered this a name conflict and
failed to restore the schema. As a result of this fix, a slash
character (/) is now expressly disallowed in foreign key
names, and the naming format parent_id/child_id/fk_name is now
enforced by the NDB API. (Bug #18824753) - Processing a NODE_FAILREP signal that contained an invalid
node ID could cause a data node to fail. (Bug #18993037, Bug
#73015)
References: This bug is a regression of Bug #16007980. - When building out of source, some files were written to the
source directory instead of the build dir. These included the
manifest.mf files used for creating ClusterJ jars and the
pom.xml file used by mvn_install_ndbjtie.sh. In addition,
ndbinfo.sql was written to the build directory, but marked as
output to the source directory in CMakeLists.txt. (Bug
#18889568, Bug #72843) - Adding a foreign key failed with NDB Error 208 if the parent
index was parent table’s primary key, the primary key was not
on the table’s initial attributes, and the child table was not
empty. (Bug #18825966) - When an NDB table served as both the parent table and a child
table for 2 different foreign keys having the same name,
dropping the foreign key on the child table could cause the
foreign key on the parent table to be dropped instead, leading
to a situation in which it was impossible to drop the
remaining foreign key. This situation can be modelled using
the following CREATE TABLE statements:
CREATE TABLE parent (<br> id INT NOT NULL,<br> PRIMARY KEY (id)<br> ) ENGINE=NDB;<br> CREATE TABLE child (<br> id INT NOT NULL,<br> parent_id INT,<br> PRIMARY KEY (id),<br> INDEX par_ind (parent_id),<br> FOREIGN KEY (parent_id)<br> REFERENCES parent(id)<br> ) ENGINE=NDB;<br> CREATE TABLE grandchild (<br> id INT,<br> parent_id INT,<br> INDEX par_ind (parent_id),<br> FOREIGN KEY (parent_id)<br> REFERENCES child(id)<br> ) ENGINE=NDB;<br>
With the tables created as just shown, the issue occured when
executing the statement ALTER TABLE child DROP FOREIGN KEY
parent_id, because it was possible in some cases for NDB to
drop the foreign key from the grandchild table instead. When
this happened, any subsequent attempt to drop the foreign key
from either the child or from the grandchild table failed.
(Bug #18662582) - ndbmtd supports multiple parallel receiver threads, each of
which performs signal reception for a subset of the remote
node connections (transporters) with the mapping of
remote_nodes to receiver threads decided at node startup.
Connection control is managed by the multi-instance TRPMAN
block, which is organized as a proxy and workers, and each
receiver thread has a TRPMAN worker running locally.
The QMGR block sends signals to TRPMAN to enable and disable
communications with remote nodes. These signals are sent to
the TRPMAN proxy, which forwards them to the workers. The
workers themselves decide whether to act on signals, based on
the set of remote nodes they manage.
The current isuue arises because the mechanism used by the
TRPMAN workers for determining which connections they are
responsible for was implemented in such a way that each worker
thought it was responsible for all connections. This resulted
in the TRPMAN actions for OPEN_COMORD, ENABLE_COMREQ, and
CLOSE_COMREQ being processed multiple times.
The fix keeps TRPMAN instances (receiver threads) executing
OPEN_COMORD, ENABLE_COMREQ and CLOSE_COMREQ requests. In
addition, the correct TRPMAN instance is now chosen when
routing from this instance for a specific remote connection.
(Bug #18518037) - Executing ALTER TABLE … REORGANIZE PARTITION after
increasing the number of data nodes in the cluster from 4 to
16 led to a crash of the data nodes. This issue was shown to
be a regression caused by previous fix which added a new dump
handler using a dump code that was already in use (7019),
which caused the command to execute two different handlers
with different semantics. The new handler was assigned a new
DUMP code (7024). (Bug #18550318)
References: This bug is a regression of Bug #14220269. - When running with a very slow main thread, and one or more
transaction coordinator threads, on different CPUs, it was
possible to encounter a timeout when sending a
DIH_SCAN_GET_NODESREQ signal, which could lead to a crash of
the data node. Now in such cases the timeout is avoided. (Bug
#18449222) - During data node failure handling, the transaction coordinator
performing takeover gathers all known state information for
any failed TC instance transactions, determines whether each
transaction has been committed or aborted, and informs any
involved API nodes so that they can report this accurately to
their clients. The TC instance provides this information by
sending TCKEY_FAILREF or TCKEY_FAILCONF signals to the API
nodes as appropriate top each affected transaction.
In the event that this TC instance does not have a direct
connection to the API node, it attempts to deliver the signal
by routing it through another data node in the same node group
as the failing TC, and sends a GSN_TCKEY_FAILREFCONF_R signal
to TC block instance 0 in that data node. A problem arose in
the case of multiple transaction cooridnators, when this TC
instance did not have a signal handler for such signals, which
led it to fail.
This issue has been corrected by adding a handler to the TC
proxy block which in such cases forwards the signal to one of
the local TC worker instances, which in turn attempts to
forward the signal on to the API node. (Bug #18455971) - A local checkpoint (LCP) is tracked using a global LCP state
(c_lcpState), and each NDB table has a status indicator which
indicates the LCP status of that table (tabLcpStatus). If the
global LCP state is LCP_STATUS_IDLE, then all the tables
should have an LCP status of TLS_COMPLETED.
When an LCP starts, the global LCP status is LCP_INIT_TABLES
and the thread starts setting all the NDB tables to
TLS_ACTIVE. If any tables are not ready for LCP, the LCP
initialization procedure continues with CONTINUEB signals
until all tables have become available and been marked
TLS_ACTIVE. When this initialization is complete, the global
LCP status is set to LCP_STATUS_ACTIVE.
This bug occurred when the following conditions were met:- An LCP was in the LCP_INIT_TABLES state, and some but not
all tables had been set to TLS_ACTIVE. - The master node failed before the global LCP state
changed to LCP_STATUS_ACTIVE; that is, before the LCP
could finish processing all tables. - The NODE_FAILREP signal resulting from the node failure
was processed before the final CONTINUEB signal from the
LCP initialization process, so that the node failure was
processed while the LCP remained in the LCP_INIT_TABLES
state.
Following master node failure and selection of a new one, the
new master queries the remaining nodes with a MASTER_LCPREQ
signal to determine the state of the LCP. At this point, since
the LCP status was LCP_INIT_TABLES, the LCP status was reset
to LCP_STATUS_IDLE. However, the LCP status of the tables was
not modified, so there remained tables with TLS_ACTIVE.
Afterwards, the failed node is removed from the LCP. If the
LCP status of a given table is TLS_ACTIVE, there is a check
that the global LCP status is not LCP_STATUS_IDLE; this check
failed and caused the data node to fail.
Now the MASTER_LCPREQ handler ensures that the tabLcpStatus
for all tables is updated to TLS_COMPLETED when the global LCP
status is changed to LCP_STATUS_IDLE. (Bug #18044717)
- An LCP was in the LCP_INIT_TABLES state, and some but not
creates a new copy of the table to be altered. This
intermediate table, which is given a name bearing the prefix
#sql-, has an updated schema but contains no data. mysqld then
copies the data from the original table to this intermediate
table, drops the original table, and finally renames the
intermediate table with the name of the original table.
mysqld regards such a table as a temporary table and does not
include it in the output from SHOW TABLES; mysqldump also
ignores an intermediate table. However, NDB sees no difference
between such an intermediate table and any other table. This
difference in how intermediate tables are viewed by mysqld
(and MySQL client programs) and by the NDB storage engine can
give rise to problems when performing a backup and restore if
an intermediate table existed in NDB, possibly left over from
a failed ALTER TABLE that used copying. If a schema backup is
performed using mysqldump and the mysql client, this table is
not included. However, in the case where a data backup was
done using the ndb_mgm client’s BACKUP command, the
intermediate table was included, and was also included by
ndb_restore, which then failed due to attempting to load data
into a table which was not defined in the backed up schema.
To prevent such failures from occurring, ndb_restore now by
default ignores intermediate tables created during ALTER TABLE
operations (that is, tables whose names begin with the prefix
#sql-). A new option –exclude-intermediate-sql-tables is
added that makes it possible to override the new behavior. The
option’s default value is TRUE; to cause ndb_restore to revert
to the old behavior and to attempt to restore intermediate
tables, set this option to FALSE. (Bug #17882305)
intended to help diagnose occasional issues seen when writing
to the mysql.ndb_binlog_index table. (Bug #17461625)
contained erroneous values for views contained in the ndbinfo
information database. This could be seen in the result of a
query such as SELECT TABLE_NAME, DEFINER FROM
INFORMATION_SCHEMA.VIEWS WHERE TABLE_SCHEMA=’ndbinfo’. (Bug
#17018500)
table’s primary key column led to node failure when restarting
data nodes. Attempting to restore a table with such a primary
key also caused ndb_restore to fail. (Bug #16895311, Bug
#68893)
InitialLogFileGroup to a value greater than that set by
SharedGlobalMemory prevented data nodes from starting; the
data nodes failed with Error 1504 Out of logbuffer memory.
While the failure itself is expected behavior, the error
message did not provide sufficient information to diagnose the
actual source of the problem; now in such cases, a more
specific error message Out of logbuffer memory (specify
smaller undo_buffer_size or increase SharedGlobalMemory) is
supplied. (Bug #11762867, Bug #55515)
between DELETE operations were handled like conflicts between
updates, with the primary rejecting the transaction and
dependents, and realigning the secondary. This meant that
their behavior with regard to subsequent operations on any
affected row or rows depended on whether they were in the same
epoch or a different one: within the same epoch, they were
considered conflicting events; in different epochs, they were
not considered in conflict.
This fix brings the handling of conflicts between deletes by
NDB$EPOCH_TRANS with that performed when using NDB$EPOCH for
conflict detection and resolution, and extends testing with
NDB$EPOCH and NDB$EPOCH_TRANS to include “delete-delete”
conflicts, and encapsulate the expected result, with
transactional conflict handling modified so that a conflict
between DELETE operations alone is not sufficient to cause a
transaction to be considered in conflict. (Bug #18459944)
via an empty epoch, the event buffer places an inconsistent
data event in the event queue. When this was consumed, it was
not removed from the event queue as expected, causing
subsequent nextEvent() calls to return 0. This caused event
consumption to stall because the inconsistency remained
flagged forever, while event data accumulated in the queue.
Event data belonging to an empty inconsistent epoch can be
found either at the beginning or somewhere in the middle.
pollEvents() returns 0 for the first case. This fix handles
the second case: calling nextEvent() call dequeues the
inconsistent event before it returns. In order to benefit from
this fix, user applications must call nextEvent() even when
pollEvents() returns 0. (Bug #18716991)
called with a wait time equal to 0, and there were no events
waiting in the queue. Now in such cases it returns 0 as
expected. (Bug #18703871)

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

是的,可以在 Windows 7 上安裝 MySQL,雖然微軟已停止支持 Windows 7,但 MySQL 仍兼容它。不過,安裝過程中需要注意以下幾點:下載適用於 Windows 的 MySQL 安裝程序。選擇合適的 MySQL 版本(社區版或企業版)。安裝過程中選擇適當的安裝目錄和字符集。設置 root 用戶密碼,並妥善保管。連接數據庫進行測試。注意 Windows 7 上的兼容性問題和安全性問題,建議升級到受支持的操作系統。

InnoDB的全文搜索功能非常强大,能够显著提高数据库查询效率和处理大量文本数据的能力。1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

聚集索引和非聚集索引的區別在於:1.聚集索引將數據行存儲在索引結構中,適合按主鍵查詢和範圍查詢。 2.非聚集索引存儲索引鍵值和數據行的指針,適用於非主鍵列查詢。

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL 數據庫中,用戶和數據庫的關係通過權限和表定義。用戶擁有用戶名和密碼,用於訪問數據庫。權限通過 GRANT 命令授予,而表由 CREATE TABLE 命令創建。要建立用戶和數據庫之間的關係,需創建數據庫、創建用戶,然後授予權限。

MySQL 和 MariaDB 可以共存,但需要謹慎配置。關鍵在於為每個數據庫分配不同的端口號和數據目錄,並調整內存分配和緩存大小等參數。連接池、應用程序配置和版本差異也需要考慮,需要仔細測試和規劃以避免陷阱。在資源有限的情況下,同時運行兩個數據庫可能會導致性能問題。

MySQL支持四種索引類型:B-Tree、Hash、Full-text和Spatial。 1.B-Tree索引適用於等值查找、範圍查詢和排序。 2.Hash索引適用於等值查找,但不支持範圍查詢和排序。 3.Full-text索引用於全文搜索,適合處理大量文本數據。 4.Spatial索引用於地理空間數據查詢,適用於GIS應用。
