一文讀懂分類模型評估指標
模型評估是深度學習和機器學習中非常重要的一部分,用於衡量模型的性能和效果。本文將逐步分解混淆矩陣,準確性,精確度,回想率和F1分數
混淆矩陣
#混淆矩陣用於評估模型在分類問題中的表現,它是一個展示模型對樣本分類情況的表格。行代表實際類別,列代表預測類別。對於二分類問題,混淆矩陣的結構如下所示:
- #True Positive (TP): 實際上為正例,模型預測為正例的樣本數,模型正確辨識正面實例的能力。較高的TP通常是可取的
- False Negative (FN): 實際為正例,模型預測為負例的樣本數,根據應用程式的不同,這可能是關鍵的(例如,未能偵測到安全威脅)。
- False Positive (FP): 實際上為負例,模型預測為正例的樣本數,強調模型在不應該預測為正的情況下預測為正的情況,這可能會產生取決於應用的後果(例如,醫療診斷中不必要的治療)
- True Negative (TN): 實際為負例,模型預測為負例的樣本數,反映模型正確辨識否定實例的能力。通常需要更高的TN
初學者看起來很亂,但實際上這很簡單。後面的Negative/Positive是模型預測值,前面的True/False是模型預測的準確度。例如,True Negative表示模型預測為Negative且與實際值相符,即預測正確。這樣就容易理解了。以下是一個簡單的混淆矩陣:
from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.pyplot as plt # Example predictions and true labels y_true = [1, 0, 1, 1, 0, 1, 0, 0, 1, 0] y_pred = [1, 0, 1, 0, 0, 1, 0, 1, 1, 1] # Create a confusion matrix cm = confusion_matrix(y_true, y_pred) # Visualize the blueprint sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["Predicted 0", "Predicted 1"], yticklabels=["Actual 0", "Actual 1"]) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show()
當你想強調正確的預測和整體準確度時,使用TP和TN。當你想了解你的模型所犯的錯誤類型時,使用FP和FN。例如,在誤報成本很高的應用程式中,最小化誤報可能是至關重要的。
舉個例子,我們來談談垃圾郵件分類器。混淆矩陣可以幫助我們了解該分類器正確識別了多少封垃圾郵件,以及錯誤地將多少封非垃圾郵件標記為垃圾郵件
基於混淆矩陣,可以計算許多其他評估指標,例如準確度、精確度、召回率和F1分數。
Accuracy
#根據我們上面的總結,計算的是能夠正確預測的的比例,分子是TP和TN都是True,也就是模型預測對了的總數
Precision
# #可以看到公式,他計算的是Positive 的佔比,也就是說數據中所有Positive的,正確預測對了有多少,所以精確度Precision又被稱作查準率
在誤報有重大後果或成本的情況下,這一點變得非常重要。以醫學診斷模型為例,精確度的確保確保只有真正需要治療的人接受治療
#Recall
回收率,又稱為敏感度或真陽性率,是指模型捕捉到所有正類實例的能力
#從公式中可以看出,它的主要目的是計算模型所捕捉的實際正例的數量,也就是正例的比例。因此,Recall又被稱為查全率
F1 Score
#F1分數的計算公式為: F1 = 2 * (精確度 * 召回率) / (精確度 召回率) 其中,精確度是指模型預測為正例的樣本中,實際為正例的比例;召回率是指模型正確預測為正例的樣本數佔所有實際為正例的樣本數的比例。 F1分數是精確度和召回率的調和平均值,它能夠綜合考慮模型的準確性和全面性,以評估模型的表現
# In this article, we introduced the confusion matrix, accuracy, precision, recall and F1 score in detail, and pointed out that these indicators can effectively evaluate and Improve model performanceSummary
以上是一文讀懂分類模型評估指標的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

寫在前面今天我們探討下深度學習技術如何改善在複雜環境中基於視覺的SLAM(同時定位與地圖建構)表現。透過將深度特徵提取和深度匹配方法相結合,這裡介紹了一種多功能的混合視覺SLAM系統,旨在提高在諸如低光條件、動態光照、弱紋理區域和嚴重抖動等挑戰性場景中的適應性。我們的系統支援多種模式,包括拓展單目、立體、單目-慣性以及立體-慣性配置。除此之外,也分析如何將視覺SLAM與深度學習方法結合,以啟發其他研究。透過在公共資料集和自採樣資料上的廣泛實驗,展示了SL-SLAM在定位精度和追蹤魯棒性方面優

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,
