首頁 科技週邊 人工智慧 谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

Jan 09, 2024 pm 07:49 PM
產業 sara-rt autort

過去一年中,連連取得突破的大模型正在重塑機器人研究領域。

隨著最先進的大模型成為機器人的"大腦",機器人的進化速度超乎想像。

7 月,Google DeepMind 宣布推出 RT-2:全球第一個控制機器人的視覺 - 語言 - 動作(VLA)模型。

只需要向對話一樣下達命令,它就能在一堆圖片中辨認出黴黴,送給她一罐「快樂水」。

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

甚至能主動思考,完成了從「選擇滅絕的動物」到抓取桌上的塑膠恐龍這種多階段推理的飛躍。

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

在 RT-2 之後,Google DeepMind 又提出了 Q-Transformer,機器人界也有了自己的 Transformer 。 Q-Transformer 使得機器人突破了對高品質的演示數據的依賴,更擅長依靠自主「思考」來累積經驗。

RT-2 發布僅兩個月,又迎來了機器人的 ImageNet 時刻。 GoogleDeepMind 聯合其他機構推出了Open X-Embodiment 資料集,改變了以往需要針對每個任務、機器人具體定制模型的方法,將各種機器人學的知識結合起來,創造出了一種訓練通用機器人的新想法。

可以想像一下,只需向你的機器人小助理發出簡單的要求,比如“打掃房子”或“做一頓美味健康的飯菜”,它們就可以完成這些任務。對於人類來說,這些工作可能很簡單,但對於機器人來說,需要它們對世界有深度理解,這並非易事。

基於在機器人Transformer 領域深耕多年的研究基礎, 近期,Google宣布了一系列機器人研究進展:AutoRT、SARA-RT 和RT-Trajectory,它們能夠幫助機器人更快地做出決策,更好地理解它們身處於怎樣的環境,並且更好地引導自己完成任務。

Google相信隨著 AutoRT、SARA-RT 和 RT-Trajectory 等研究成果的推出,能為現實的世界機器人的資料收集、速度和泛化能力帶來增益。

接下來,讓我們回顧一下這幾項重要研究。

AutoRT:利用大型模型來更好地訓練機器人

AutoRT 結合了大型基礎模型(如大型語言模型(LLM)或視覺語言模型(VLM))和機器人控制模型(RT-1 或RT-2),創建了一個可以在新環境中部署機器人以收集訓練資料的系統。 AutoRT 可以同時指導多個配備了視訊攝影機和末端執行器的機器人,在各種環境中執行多樣化的任務。

具體來說,每個機器人將根據 AutoRT,使用視覺語言模型(VLM)來「看看四周」,了解其環境和視線內的物體。接下來,大型語言模型會為其提出一系列創意任務,例如“將零食放在桌上”,並扮演決策者的角色,為機器人選擇需要執行的任務。

研究人員在現實世界中對 AutoRT 進行了長達七個月的廣泛評估。實驗證明,AutoRT 系統能夠同時安全地協調多達 20 個機器人,最多時共能協調 52 個機器人。透過指導機器人在各種辦公大樓內執行各種任務,研究人員收集了涵蓋 77,000 個機器人試驗,6,650 個獨特任務的多樣化資料集。

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

上圖呈現了 AutoRT 系統的運作過程:(1)自主輪式機器人找到了一個有多個物件的位置。 (2)VLM 向 LLM 描述場景和物件。 (3)LLM 為機器人提出各種操作任務,並決定哪些任務機器人可以獨立完成,哪些任務需要人類遠端控制,哪些任務不可能完成,然後做出選擇。 (4)機器人嘗試選擇要做的任務,收集實驗數據,並對數據的多樣性和新鮮度進行評分。機器人將不斷重複這個過程。

AutoRT 具有利用大型基礎模型的潛力,這對於機器人理解實際應用中的人類指令至關重要。透過收集更全面的實驗訓練數據和更多樣化的數據,AutoRT 能夠擴展機器人的學習能力,為現實世界的機器人訓練帶來提升。

在機器人融入我們的日常生活之前,需要確保它們的安全性,這要求研究者做到負責任地開發,並對機器人的安全性進行深度研究。

雖然 AutoRT 現在只是一個資料收集系統,但可以將其視為現實世界中自主機器人的早期階段。它具有安全護欄,其中一項是一套以安全為重點的提示詞,它能夠在機器人執行基於 LLM 的決策時提供需要遵守的基本規則。

這些規則部分受到艾薩克・阿西莫夫的機器人三定律的啟發,其中最重要的是機器人「不得傷害人類」。安全規則還要求機器人不得嘗試涉及人類、動物、尖銳物體或電器的任務。

僅在提示詞方面下功夫,也無法完全保證機器人實際應用中的安全問題。因此,AutoRT 系統也包含實用安全措施層這項機器人技術的經典設計。例如,協作機器人的程式被設定為如果其關節上的力超過給定閾值,則自動停止,並且所有自主控制的機器人都能夠透過物理停用開關被限制在人類監督員的視線範圍內。

SARA-RT:讓機器人Transformer(RT)變得更快、更精簡

另一項成果SARA-RT,將機器人Transformer(RT)模型轉換為更有效率的版本。

Google團隊開發的 RT 神經網路架構已被用於最新的機器人控制系統,包括 RT-2 模型。最好的 SARA-RT-2 模型在獲得簡短的影像歷史記錄後,比 RT-2 模型的精確度高 10.6%,速度快 14%。谷歌表示,這是第一個在不降低品質的情況下提高運算能力的可擴展注意力機制。

雖然 Transformer 功能強大,但它們可能會受到運算需求的限制,從而減慢決策速度。 Transformer 主要依賴二次複雜度的注意力模組。這意味著,如果 RT 模型的輸入增加一倍(例如,為機器人提供更多或更高解析度的感測器),處理該輸入所需的運算資源就會增加四倍,從而導致決策速度減慢。

SARA-RT 採用了一種新穎的模型微調方法(稱為「向上訓練」)來提高模型的效率。向上訓練將二次複雜性轉換為單純的線性複雜性,從而大幅降低了計算要求。這種轉換不僅能提高原始模型的速度,還能維持其品質。

Google希望許多研究人員和從業人員能將此實用系統應用於機器人技術及其他領域。由於 SARA 提供了加快 Transformer 速度的通用方法,無需進行計算成本高昂的預訓練,因此這種方法具有大規模推廣 Transformer 技術的潛力。 SARA-RT 不需要任何額外的程式碼,因為可以使用各種開源的線性變體。

當SARA-RT 應用於擁有數十億個參數的SOTA RT-2 模型,它能在各種機器人任務中實現更快的決策和更好的性能:

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來

#用於操縱任務的SARA-RT-2 模型。機器人的動作以圖像和文字指令為條件。

憑藉著堅實的理論基礎,SARA-RT 可應用於各種 Transformer 模型。例如,將 SARA-RT 應用於點雲 Transformer(用於處理來自機器人深度攝影機的空間資料),其速度能夠提高一倍以上。

RT-Trajectory:幫助機器人泛化

人類可以直觀地理解、學會如何擦桌子,但機器人需要許多可能的方式將指令轉化為實際的物理動作。

傳統上,對機械手臂的訓練依賴於將抽象的自然語言(擦桌子)映射到具體的動作(關閉抓手、向左移動、向右移動),這使得模型很難推廣到新任務中。與此相反,RT - 軌跡模型透過解釋特定的機器人動作(如影片或草圖中的動作),使 RT 模型能夠理解 「如何完成」任務。

RT-Trajectory 模型可自動加入視覺輪廓,描述訓練影片中的機器人動作。 RT-Trajectory 將訓練資料集中的每段影片與機器手臂執行任務時抓手的 2D 軌跡草圖疊加在一起。這些軌跡以 RGB 影像的形式,為模型學習機器人控制策略提供了低層次、實用的視覺提示。

在對訓練資料中未見的41 項任務進行測試時,由RT-Trajectory 控制的機械手臂的性能比現有的SOTA RT 模型高出一倍多:任務成功率達到63% ,而RT-2 的成功率僅29%。

該系統的用途十分廣泛,RT-Trajectory 還可以透過觀看人類對所需任務的演示來創建軌跡,甚至可以接受手繪草圖。而且,它還能隨時適應不同的機器人平台。

谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來左圖:只使用自然語言資料集訓練的RT 模型控制的機器人,在執行擦桌子這一新任務時受挫,而由RT 軌跡模型控制的機器人,在經過2D 軌跡增強的相同資料集訓練後,成功規劃並執行了擦拭軌跡。右圖:訓練有素的 RT 軌跡模型在接到新任務(擦桌子)後,可以在人類的協助下或利用視覺語言模型自行以多種方式創建 2D 軌跡。

RT 軌跡利用了豐富的機器人運動訊息,這些訊息存在於所有機器人資料集中,但目前尚未充分利用。 RT-Trajectory 不僅代表在製造面向新任務高效準確移動的機器人的道路上又邁進了一步,而且還能從現有數據集中發掘知識。

以上是谷歌Deepmind設想重塑機器人,為大型模型引入具身智慧的未來的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

DeepMind機器人打乒乓球,正手、反手溜到飛起,全勝人類初學者 DeepMind機器人打乒乓球,正手、反手溜到飛起,全勝人類初學者 Aug 09, 2024 pm 04:01 PM

但可能打不過公園裡的老大爺?巴黎奧運正在如火如荼地進行中,乒乓球項目備受關注。同時,機器人打乒乓球也取得了新突破。剛剛,DeepMind提出了第一個在競技乒乓球比賽中達到人類業餘選手等級的學習型機器人智能體。論文地址:https://arxiv.org/pdf/2408.03906DeepMind這個機器人打乒乓球什麼程度呢?大概和人類業餘選手不相上下:正手反手都會:對手採用多種打法,機器人也能招架得住:接不同旋轉的發球:不過,比賽激烈程度似乎不如公園老大爺對戰。對機器人來說,乒乓球運動

首配機械爪!元蘿蔔亮相2024世界機器人大會,發布首個走進家庭的西洋棋機器人 首配機械爪!元蘿蔔亮相2024世界機器人大會,發布首個走進家庭的西洋棋機器人 Aug 21, 2024 pm 07:33 PM

8月21日,2024世界機器人大會在北京隆重召開。商湯科技旗下家用機器人品牌「元蘿蔔SenseRobot」家族全系產品集體亮相,並最新發布元蘿蔔AI下棋機器人-國際象棋專業版(以下簡稱「元蘿蔔國象機器人」),成為全球首個走進家庭的西洋棋機器人。作為元蘿蔔的第三款下棋機器人產品,全新的國象機器人在AI和工程機械方面進行了大量專項技術升級和創新,首次在家用機器人上實現了透過機械爪拾取立體棋子,並進行人機對弈、人人對弈、記譜複盤等功能,

Claude也變懶了!網友:學會給自己放假了 Claude也變懶了!網友:學會給自己放假了 Sep 02, 2024 pm 01:56 PM

開學將至,該收心的不只即將開啟新學期的同學,可能還有AI大模型。前段時間,Reddit擠滿了吐槽Claude越來越懶的網友。 「它的水平下降了很多,經常停頓,甚至輸出也變得很短。在發布的第一周,它可以一次性翻譯整整4頁文稿,現在連半頁都輸出不了!」https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/在一個名為“對Claude徹底失望了的帖子裡”,滿滿地

世界機器人大會上,這家承載「未來養老希望」的國產機器人被包圍了 世界機器人大會上,這家承載「未來養老希望」的國產機器人被包圍了 Aug 22, 2024 pm 10:35 PM

在北京舉行的世界機器人大會上,人形機器人的展示成為了現場絕對的焦點,在星塵智能的展台上,由於AI機器人助理S1在一個展區上演揚琴、武術、書法三台大戲,能文能武,吸引了大量專業觀眾和媒體的駐足。在有彈性的琴弦上優雅的演奏,讓S1展現出速度、力度、精準度兼具的精細操作與絕對掌控。央視新聞對「書法」背後的模仿學習和智慧控制進行了專題報道,公司創始人來傑解釋到,絲滑動作的背後,是硬體側追求最好力控和最仿人身體指標(速度、負載等),而是在AI側則採集人的真實動作數據,讓機器人遇強則強,快速學習進化。而敏捷

ACL 2024獎項發表:華科大破解甲骨文最佳論文之一、GloVe時間檢驗獎 ACL 2024獎項發表:華科大破解甲骨文最佳論文之一、GloVe時間檢驗獎 Aug 15, 2024 pm 04:37 PM

本屆ACL大會,投稿者「收穫滿滿」。為期六天的ACL2024正在泰國曼谷舉辦。 ACL是計算語言學和自然語言處理領域的頂級國際會議,由國際計算語言學協會組織,每年舉辦一次。一直以來,ACL在NLP領域的學術影響力都名列第一,它也是CCF-A類推薦會議。今年的ACL大會已是第62屆,接收了400餘篇NLP領域的前沿工作。昨天下午,大會公佈了最佳論文等獎項。此次,最佳論文獎7篇(兩篇未公開)、最佳主題論文獎1篇、傑出論文獎35篇。大會也評出了資源論文獎(ResourceAward)3篇、社會影響力獎(

李飛飛團隊提出ReKep,讓機器人具備空間智能,還能整合GPT-4o 李飛飛團隊提出ReKep,讓機器人具備空間智能,還能整合GPT-4o Sep 03, 2024 pm 05:18 PM

視覺與機器人學習的深度融合。當兩隻機器手絲滑地互相合作疊衣服、倒茶、將鞋子打包時,加上最近老上頭條的1X人形機器人NEO,你可能會產生一種感覺:我們似乎開始進入機器人時代了。事實上,這些絲滑動作正是先進機器人技術+精妙框架設計+多模態大模型的產物。我們知道,有用的機器人往往需要與環境進行複雜精妙的交互,而環境則可被表示成空間域和時間域上的限制。舉個例子,如果要讓機器人倒茶,那麼機器人首先需要抓住茶壺手柄並使之保持直立,不潑灑出茶水,然後平穩移動,一直到讓壺口與杯口對齊,之後以一定角度傾斜茶壺。這

鴻蒙智行享界S9全場景新品發表會,多款重磅新品齊發 鴻蒙智行享界S9全場景新品發表會,多款重磅新品齊發 Aug 08, 2024 am 07:02 AM

今天下午,鸿蒙智行正式迎来了新品牌与新车。8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕昇激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为

分散式人工智慧盛會DAI 2024徵稿:Agent Day,強化學習之父Richard Sutton將出席!顏水成、Sergey Levine以及DeepMind科學家將做主旨報告 分散式人工智慧盛會DAI 2024徵稿:Agent Day,強化學習之父Richard Sutton將出席!顏水成、Sergey Levine以及DeepMind科學家將做主旨報告 Aug 22, 2024 pm 08:02 PM

會議簡介隨著科技的快速發展,人工智慧成為了推動社會進步的重要力量。在這個時代,我們有幸見證並參與分散式人工智慧(DistributedArtificialIntelligence,DAI)的創新與應用。分散式人工智慧是人工智慧領域的重要分支,這幾年引起了越來越多的關注。基於大型語言模型(LLM)的智能體(Agent)異軍突起,透過結合大模型的強大語言理解和生成能力,展現了在自然語言互動、知識推理、任務規劃等方面的巨大潛力。 AIAgent正在接棒大語言模型,成為目前AI圈的熱門話題。 Au

See all articles