目錄
表現比肩全監督方式
學習分兩階段進行
階段一:片段級判別學習
階段二:實例層級完整性學習
首頁 科技週邊 人工智慧 單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

Jan 11, 2024 pm 10:39 PM
ai 訓練

如何從一段影片中找出感興趣的片段?時序行為偵測(Temporal Action Localization,TAL)是一種常用方法。

利用影片內容建模之後,就可以在整段影片當中自由搜尋了。

而華中科技大學與密西根大學的聯合團隊最近又為這項技術帶來了新的進展——

過去TAL中的建模是片段甚至實例級的,而現在只要影片裡的一幀就能實現,效果媲美全監督。

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

來自華中科技大學的團隊提出了一個名為HR-Pro的新框架,用於點標註監督的時序行為檢測。

透過多層級的reliability propagation,HR-Pro可以網路學習到更具辨別力的片段級特徵和更可靠的實例級邊界。

HR-Pro由兩個可靠性感知的階段組成,它能夠有效地從片段層級和實例層級的點標註中傳播高置信度的線索,從而使網路學習到更具區分性的片段表示和更可靠的提議。

在多個基準資料集上進行的實驗表明,HR-Pro優於現有方法,結果最先進,證明了其有效性和點標註的潛力。

表現比肩全監督方式

下圖展示了HR-Pro與LACP在THUMOS14測試影片上進行時序行為檢測表現比較。

HR-Pro展現出更了準確的動作實例檢測,具體來說:

  • 對於「高爾夫揮桿」行為,HR-Pro有效地區分了行為和背景片段,減輕了LACP難以處理的False Positive預測;
  • 對於鐵餅投擲行為,HR-Pro檢測到比LACP更完整的片段,後者在非區分性動作片段上具有較低的激活值。

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

資料集上的測試結果,也印證了這一直觀感受。

將THUMOS14資料集上的檢測結果視覺化後可以觀察到,在實例層級完整性學習之後,高品質預測和低品質預測之間的差異顯著增大。

(左側是實例層級完整性學習之前的結果,右側是學習之後的結果。橫軸和縱軸分別表示時間和可靠性分數。)

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

整體來看,在常用4個資料集中,HR-Pro的效能都大幅超越最先進的點監督方法,在THUMOS14資料集上的平均mAP達到60.3%,相較之前的SoTA方法(53.7%)的提升為6.5%,並且能與一些全監督方法達到相當的效果。

在THUMOS14測試集上與下表中的先前最先進方法相比,對於IoU閾值在0.1到0.7之間,HR-Pro的平均mAP為60.3%,比先前最先進方法CRRC- Net高6.5%。

且HR-Pro能夠與具有競爭力的全監督方法達到相當的表現,例如AFSD(對於IoU閾值在0.3到0.7之間,平均mAP為51.1% vs. 52.0%)。

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

△HR-Pro與前SOTA方法在THUMOS14資料集上的比較

在各種基準資料集上的通用性和優越性方面,HR-Pro也明顯優於現有方法,在GTEA、BEOID和ActivityNet 1.3上分別取得了3.8%、7.6%和2.0%的提高。

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

△HR-Pro與前SOTA方法在GTEA等資料集上的比較

那麼,HR-Pro具體是如何實現的呢?

學習分兩階段進行

研究團隊提出了多層級可靠傳播方法,在片段級引入可靠片段記憶模組並利用交叉注意力的方法向其他片段傳播,在實例級提出基於點監督的提議產生來關聯片段和實例,用於產生不同可靠性的proposals,進一步在實例層級優化proposals的置信度和邊界。

HR-Pro的模型架構如下圖所示:時序行為偵測被分割為兩階段的學習過程,即片段層級的判別性學習實例層級的完整性學習

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

階段一:片段級判別學習

研究團隊引入可靠性感知的片段級判別學習,提出為每個類別儲存可靠原型,並透過影片內和視訊間的方式將這些原型中的高置信度線索傳播到其他片段。

片段級可靠原型建構

為了建立片段層級的可靠原型,團隊創建了一個線上更新的原型memory,用於儲存各類行為的可靠原型mc(其中c = 1, 2, …, C),以便能夠利用整個資料集的特徵資訊。

研究團隊選擇了具有點標註的片段特徵初始化原型:

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

#接下來,研究人員使用偽標記的行為片段特徵來更新每個類別的原型,具體表述如下:

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

片段級可靠性感知最佳化

為了將片段級可靠原型的特徵資訊傳遞到其他片段,研究團隊設計了一個Reliabilty-aware Attention Block(RAB),透過交叉注意力的方式實現了將原型中的可靠資訊注入到其他的片段中,從而增強片段特徵的魯棒性,並增加對較不具判別力片段的關注。

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

為了學習到更有判別裡的片段特徵,團隊也建構了可靠性感知的片段對比損失:

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

階段二:實例層級完整性學習

為了充分探索實例層級行為的時序結構並優化提議的得分排名,團隊引入了實例層級的動作完整性學習。

這種方法旨在透過可靠的實例原型的指導,透過實例層級的特徵學習來精化提議的置信度分數和邊界。

實例層級可靠原型建構

為了在訓練過程中利用點標註的實例層級先驗訊息,團隊提出了一種基於點標註的提議生成方法用於產生不同Reliability的proposals。

根據其可靠性分數和相對點標註的時序位置,這些提議可以分為兩種類型:

  • 可靠提議(Reliable Proposals, RP ):對於每個類別中的每個點,提議包含了這個點,並具有最高的可靠性;
  • 正樣本提議(Positive Proposals, PP):所有其餘的候選提議。

為確保正樣本和負樣本數量平衡,研究團隊將那些具有類別無關的注意力分數低於預定義值的片段分組為負樣本提議(Negative Proposals, NP)。

實例層級可靠性感知最佳化

為了預測每個提議的完整性分數,研究團隊將敏感邊界的提議特徵輸入至得分預測頭φs:

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

然後用正/負樣本提議與可靠提議的IoU作為指導,監督提議的完整性分數預測:

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

為了獲得更準確邊界的行為proposal,研究者將每個PP中的proposal的起始區域特徵和結束區域特徵輸入到回歸預測頭φr中,以預測proposal開始和結束時間的偏移量。

進一步計算得到精細化的proposals,並希望精細化後的proposals與可靠proposal重疊。

#

單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA
單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA
單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA

總之,HR-Pro只需很少的標註就能很好的效果大幅度降低了取得標籤的成本,同時又擁有較強的泛化能力,為實際部署應用提供了有利條件。

據此,作者預計,HR-Pro將在行為分析、人機互動、駕駛分析等領域擁有廣闊的應用前景。

論文網址:https://arxiv.org/abs/2308.12608

以上是單幀標註影片就能學到片段特徵,達到全監督性能!華科拿下時序行為檢測新SOTA的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1425
52
Laravel 教程
1325
25
PHP教程
1272
29
C# 教程
1251
24
C  中的chrono庫如何使用? C 中的chrono庫如何使用? Apr 28, 2025 pm 10:18 PM

使用C 中的chrono庫可以讓你更加精確地控制時間和時間間隔,讓我們來探討一下這個庫的魅力所在吧。 C 的chrono庫是標準庫的一部分,它提供了一種現代化的方式來處理時間和時間間隔。對於那些曾經飽受time.h和ctime折磨的程序員來說,chrono無疑是一個福音。它不僅提高了代碼的可讀性和可維護性,還提供了更高的精度和靈活性。讓我們從基礎開始,chrono庫主要包括以下幾個關鍵組件:std::chrono::system_clock:表示系統時鐘,用於獲取當前時間。 std::chron

如何理解C  中的DMA操作? 如何理解C 中的DMA操作? Apr 28, 2025 pm 10:09 PM

DMA在C 中是指DirectMemoryAccess,直接內存訪問技術,允許硬件設備直接與內存進行數據傳輸,不需要CPU干預。 1)DMA操作高度依賴於硬件設備和驅動程序,實現方式因係統而異。 2)直接訪問內存可能帶來安全風險,需確保代碼的正確性和安全性。 3)DMA可提高性能,但使用不當可能導致系統性能下降。通過實踐和學習,可以掌握DMA的使用技巧,在高速數據傳輸和實時信號處理等場景中發揮其最大效能。

怎樣在C  中處理高DPI顯示? 怎樣在C 中處理高DPI顯示? Apr 28, 2025 pm 09:57 PM

在C 中處理高DPI顯示可以通過以下步驟實現:1)理解DPI和縮放,使用操作系統API獲取DPI信息並調整圖形輸出;2)處理跨平台兼容性,使用如SDL或Qt的跨平台圖形庫;3)進行性能優化,通過緩存、硬件加速和動態調整細節級別來提升性能;4)解決常見問題,如模糊文本和界面元素過小,通過正確應用DPI縮放來解決。

C  中的實時操作系統編程是什麼? C 中的實時操作系統編程是什麼? Apr 28, 2025 pm 10:15 PM

C 在實時操作系統(RTOS)編程中表現出色,提供了高效的執行效率和精確的時間管理。 1)C 通過直接操作硬件資源和高效的內存管理滿足RTOS的需求。 2)利用面向對象特性,C 可以設計靈活的任務調度系統。 3)C 支持高效的中斷處理,但需避免動態內存分配和異常處理以保證實時性。 4)模板編程和內聯函數有助於性能優化。 5)實際應用中,C 可用於實現高效的日誌系統。

怎樣在C  中測量線程性能? 怎樣在C 中測量線程性能? Apr 28, 2025 pm 10:21 PM

在C 中測量線程性能可以使用標準庫中的計時工具、性能分析工具和自定義計時器。 1.使用庫測量執行時間。 2.使用gprof進行性能分析,步驟包括編譯時添加-pg選項、運行程序生成gmon.out文件、生成性能報告。 3.使用Valgrind的Callgrind模塊進行更詳細的分析,步驟包括運行程序生成callgrind.out文件、使用kcachegrind查看結果。 4.自定義計時器可靈活測量特定代碼段的執行時間。這些方法幫助全面了解線程性能,並優化代碼。

給MySQL表添加和刪除字段的操作步驟 給MySQL表添加和刪除字段的操作步驟 Apr 29, 2025 pm 04:15 PM

在MySQL中,添加字段使用ALTERTABLEtable_nameADDCOLUMNnew_columnVARCHAR(255)AFTERexisting_column,刪除字段使用ALTERTABLEtable_nameDROPCOLUMNcolumn_to_drop。添加字段時,需指定位置以優化查詢性能和數據結構;刪除字段前需確認操作不可逆;使用在線DDL、備份數據、測試環境和低負載時間段修改表結構是性能優化和最佳實踐。

量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 量化交易所排行榜2025 數字貨幣量化交易APP前十名推薦 Apr 30, 2025 pm 07:24 PM

交易所內置量化工具包括:1. Binance(幣安):提供Binance Futures量化模塊,低手續費,支持AI輔助交易。 2. OKX(歐易):支持多賬戶管理和智能訂單路由,提供機構級風控。獨立量化策略平台有:3. 3Commas:拖拽式策略生成器,適用於多平台對沖套利。 4. Quadency:專業級算法策略庫,支持自定義風險閾值。 5. Pionex:內置16 預設策略,低交易手續費。垂直領域工具包括:6. Cryptohopper:雲端量化平台,支持150 技術指標。 7. Bitsgap:

C  中的字符串流如何使用? C 中的字符串流如何使用? Apr 28, 2025 pm 09:12 PM

C 中使用字符串流的主要步驟和注意事項如下:1.創建輸出字符串流並轉換數據,如將整數轉換為字符串。 2.應用於復雜數據結構的序列化,如將vector轉換為字符串。 3.注意性能問題,避免在處理大量數據時頻繁使用字符串流,可考慮使用std::string的append方法。 4.注意內存管理,避免頻繁創建和銷毀字符串流對象,可以重用或使用std::stringstream。

See all articles