資料建模在物聯網的應用
隨著大數據和人工智慧的進一步發展,物聯網正日益朝向AIOT的方向發展。物聯基礎設施將成為新一代的資訊基礎設施,形成「物聯」、「數聯」、「智聯」三位一體的體系結構。
對物聯基礎設施資料進行採集、儲存、分析、挖掘和智慧化應用是非常重要的一環。為此,我們需要對物聯資料進行體系化建模,建立完整、標準的物聯資料建模體系,以提供基礎保障。這樣,我們就能更好地分析、挖掘和應用物聯數據,進一步推動物聯網的發展。
物模型旨在標準化、語意化物件描述、辨識和管理,推動物聯網智慧化、高效化。
物聯本體建模:
- 目的:解決「物體是什麼」的問題,即對物聯網中的物體進行定義和描述。
- 方法:對物聯網基礎架構及資料進行的標準化歸納、整理。形成一套完整的資料目錄(元資料),為物體提供基礎和架構。
- 成果:建構一個適用於物聯網基礎架構服務場景的本體模型。這個模型可以描述物體的基本屬性、功能和與其他物體之間的關係。
物聯解析系統:
- 目的:解決物件存取、發現的問題,也就是如何辨識新存取的物件。
- 方法:透過解析物體的核心要素,如物名、能力和位置,來實現物體的辨識。這包括物名標識解析、能力標識解析和位置標識解析等。
- 成果:提供一個物體解析體系,能夠快速地辨識和發現新存取的物體,並為其提供對應的服務和管理。
物體啟用系統:
- 目的:解決「物體怎麼用」的問題,即如何管理和整合物體,使其能夠為外部提供服務。
- 方法:負責物件的存取管理、能力管理和能力整合管理等,確保物件能正確、有效地被使用。
- 成果:提供一個統一的介面和能力服務,使得外部系統或應用能夠方便地使用和管理物聯網中的物件。
資料分析建模需要掌握的數學和統計學的原理和方法包括但不限於:
- 微積分:微積分是研究函數的變化規律的學科,在資料分析中,微積分的應用主要涉及導數和微分,可以用來研究資料點的變化趨勢。
- 線性代數:線性代數是研究向量、矩陣及其運算的學科,在資料分析中,線性代數的應用主要涉及向量、矩陣和線性迴歸等。
- 機率論:機率論是研究隨機事件的機率及其統計規律,在資料分析中,機率論的應用主要涉及機率分佈和假設檢定等。
- 統計學:統計學是研究資料的收集、整理、描述、分析和解釋的學科,在資料分析中,統計學的應用主要涉及描述統計、推論統計和資料探勘等。
- 機器學習:機器學習是利用演算法讓機器從資料中學習到知識,在資料分析中,機器學習的應用主要涉及分類、迴歸、聚類等。
- 深度學習:深度學習是機器學習的一個分支,主要是透過建立深度神經網路來學習,在資料分析中,深度學習的應用主要涉及影像辨識、語音辨識、自然語言處理等。
- 資料視覺化:資料視覺化是透過圖表、圖形等方式將資料呈現出來,以便更好地理解資料和分析資料。
基於物聯網的資料分析建模實踐,在基於人工智慧方面,可以採用以下方法和技術:
- 資料收集與處理:利用人工智慧技術,即時收集物聯網設備產生的數據,並進行處理和分析。這包括資料過濾、清洗、預處理等步驟,以提取有價值的資訊。
- 特徵提取與選擇:利用人工智慧演算法,從原始資料中自動提取有意義的特徵。這可以透過特徵工程和機器學習等技術實現,以便更好地利用數據。
- 模型訓練與最佳化:利用人工智慧技術,對模型進行訓練與最佳化。這可以採用各種機器學習演算法和深度學習技術,如決策樹、支援向量機、神經網路等。透過訓練和優化,可以提高模型的預測準確性和穩定性。
- 即時預測與決策:利用人工智慧技術,對即時數據進行即時分析與預測。這可以透過串流計算、即時機器學習等技術實現,以便及時發現異常情況並採取相應措施。
- 視覺化與互動:利用人工智慧技術,將分析結果進行視覺化展示,並為使用者提供友善的互動介面。這可以透過資料視覺化技術、自然語言處理等技術來實現,使用戶能夠更好地理解資料和設備狀態。
以上是資料建模在物聯網的應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G
