2024年的容器技術展望:追求高效能、人工智慧和安全的融合
Sylabs是一家提供效能密集型容器技術工具和服務的公司,他們對2024年產業前景進行了預測。根據他們的預測,未來幾年中,我們將看到效能可攜性、人工智慧(AI)和AIOps(人工智慧營運)工作負載管理、FAIR原則的遵守、機密運算和容器安全等關鍵領域取得重大進展。這些進展將推動科學數據的可發現、可存取、可互通和可重複使用的管理原則的發展。 Sylabs致力於在這些領域提供創新的解決方案,以滿足不斷增長的行業需求。他們的預測顯示,這些領域的發展將為企業帶來更高的效率和更好的安全性。
使DevOps適應AI革命:效能可攜性範式
隨著人工智慧(AI)和機器學習(ML)的快速發展,效能可移植性對於DevOps(開發營運)團隊來說變得越來越重要。這是因為在不同硬體之間保持應用程式效率變得至關重要,尤其是當工作負載從雲端擴展到邊緣和高效能運算(HPC)環境時。 DevOps團隊需要應對來自行業領導者和新創公司的專業人工智慧硬體的興起,因此這項策略要求變得至關重要,進一步使得DevOps經理的工作變得更加複雜。 性能可移植性是指將應用程式在不同硬體平台上運行時能夠保持相對較高的效率。這對DevOps團隊來說是一個挑戰,因為不同的硬體平台有不同的架構和功能。為了解決這個問題,DevOps團隊需要深入了解不同硬體平台的特點,針對性地進行最佳化和調整,以確保應用程式在不同平台上能夠發揮最佳效能。 此外,隨著人工智慧硬體的興起,DevOps團隊需要與供應商和廠商保持緊密合作。他們需要了解最新的人工智慧硬體技術
Sylabs策略副總裁Keith Cunningham指出,效能可移植性在人工智慧和機器學習領域越來越成為一種策略需求。面對不同種類的硬件,開發者必須確保跨平台的應用效率。相容於開放容器計劃(OCI)的運算容器技術,例如singularityce,有助於彌合高效能運算(HPC)和IT DevOps之間的差距。這種整合是充分發揮人工智慧潛力的關鍵。透過將高效能運算的強大和精確性與DevOps實踐的敏捷性和自動化相結合,開發人員可以促進更無縫、高效和創新的開發流程,這對於適應快速發展的技術環境至關重要。根據Sylabs策略副總裁Keith Cunningham介紹,他們的目標是為開發者提供一種能夠在不同硬體平台上高效運作的容器解決方案。他強調,隨著人工智慧和機器學習的不斷發展,開發者需要一種能夠在多樣化硬體環境下提供一致性性能的技術。這也是為什麼他們將相容於開放容器計畫(OCI)的運算容器技術視為關鍵。透過使用這種技術,開發者可以利用高效能運算的強大功能,同時享受DevOps實踐的敏捷性和自動化,從而促進更無縫、高效和創新的開發流程。根據他的說法,這對於適應快速發展的技術環境至關重要。
描繪AIOps的演變:向先進容器化飛躍
AIOps(人工智慧營運)領域預計將以穩定的25%複合年增長率(CAGR)發展。它正在經歷由多種因素推動的轉型,特別是透過容器化軟體來實現應用程式的現代化,以及更先進和複雜的人工智慧技術的整合。在這種情況下,容器化扮演的關鍵角色變得顯而易見。 AIOps實踐者努力提高系統的可擴展性、可靠性和效率,而先進的容器解決方案擅長在具有重要存取和安全要求的各種環境中運作。對於確保隔離和一致性至關重要,這些方面對於有效擴展人工智慧操作和確保強大的故障恢復機制至關重要。因此,容器化為AIOps的成功實施提供了重要的基礎。 總之,AIOps領域正在快速發展,並受到容器化軟體和先進的人工智慧技術的推動。透過提高系統的可擴展性、可靠性和效率,並確保隔離和一致性,容器化解決方案為AIOps操作的擴展和故障恢復機制的強大提供了關鍵支援。預計AIOps將繼續以穩定的成長率發展,並在未來為企業提供更強大的營運能力。
在這個不斷發展的環境中,AIOps從業者透過應用機器學習(ML)演算法將事件與業務關聯起來,以提高預測分析的準確性。這種策略方法有助於更快、更有效地做出IT決策,進而提高複雜系統的管理和自動化效率。
展望2024年,AIOps软件供应商将整合生成式人工智能(GenAI),这将成为一个重要的里程碑。这种技术进步将加速AIOps的采用,并引入更复杂和响应性更强的操作能力,从而提高服务水平协议(SLA)的依从性。软件开发人员对AIOps应用程序中容器化的偏好反映了一个更广泛的行业趋势,即安全、可扩展和高效地部署人工智能驱动的操作。这将为企业带来更高的效率和灵活性,同时也提高了数据安全和系统可靠性的保障。随着AIOps技术的不断发展,我们可以期待在2024年看到更多创新和突破。
Cunningham认为,先进的容器化和人工智能技术将对AIOps产生革命性的影响。这种集成方式将改变IT运营的方式,提升可扩展性和安全性,并显著提高运营效率。容器化技术将成为新时代AIOps的基石,使其能够更加敏捷和精确地处理日益复杂的现代IT系统。
协作与创新:FAIR原则满足现代人工智能研究
人工智能研究人员准备将人工智能领域与可查找性、可访问性、互操作性和可重用性的原则更紧密地结合起来,从科学计算中汲取灵感。他们认为,计算容器技术的进步将推动人工智能工作流和相关数据集的分布和同行评审变得更加一致。通过采用这些原则,人工智能研究的效率、整合和透明度将得到显著提高,集体改进也将得以促进。此外,这种结合还将为人工智能应用的开发提供更大的灵活性。预计这种由计算容器技术驱动的协作将在小组和组织中得到培养,从而带来更好的容器化人工智能工作流和相关数据集的分布和同行评审。
通过容器化实现人工智能工作流程的标准化,可以解决“在我的机器上工作”问题,使得在不同的计算环境中建立更一致的体验。这个举措旨在加强人工智能模型的可重复性和可靠性,体现了FAIR科学计算工作流程的进步。这种做法有望提高人工智能操作的可扩展性和效率,尤其是在那些使用为性能密集型环境量身定制的容器平台进行操作的情况下。
机密计算:容器安全的下一个迈进
Sylabs预计,在容器化环境中,对高级安全措施的需求将不断增长,重点是在容器内使用期间保护敏感数据。机密计算成为了这一领域的关键参与者,它通过将数据隔离在处理器架构的安全区域内,从而独特地保护使用中的数据,该架构专为增强数据保护而设计。这种方法补充了针对静态和传输数据的传统安全措施,并降低了与内存访问和容器内执行环境相关的风险。
Cunningham说:“我们预计将转向更安全和高效的容器技术,特别是通过将机密计算解决方案集成到现有的工作流程中。这些集成将在保持系统可访问性和功能的同时增强安全性。机密计算将成为现代容器安全战略中至关重要的前瞻性组成部分。”
向数据密集型计算的下一代容器解决方案转变
到2024年,该行业将面临一个关键挑战——传统的企业容器解决方案往往不足以满足高级、性能密集型计算环境(如人工智能应用程序)的需求。这种需求在共享环境中尤其真实,在共享环境中,安全性和访问变得至关重要,这促使人们向容器工作流转变,这种容器工作流集成了为大规模、数据丰富的环境量身定制的容器。这些复杂的环境以高计算需求和复杂的数据处理为特征,需要混合容器技术来克服传统产品中的一些技术差距。
Cunningham表示:“面对人工智能和数据密集型计算的复杂需求,企业对Singularity容器的兴趣明显激增。Singularity是专门为解决现代横向扩展计算中固有的可扩展性和复杂性挑战而设计的。在社区主导的改进下,它经历了重大的发展,现在与已建立的OCI工作流无缝集成,为要求苛刻的应用程序提供可扩展性、健壮的安全性和更高的效率。此外,其增强的互操作性提高了跨各种计算环境的性能,并扩展了其对各种工作负载的适应性,与各种高级编排和管理系统无缝结合。随着越来越多的公司选择Sylabs的解决方案来提升其系统的性能和安全性,我们预计Sylabs将进一步发展,而无需对工作流程进行颠覆性的改革。”
以上是2024年的容器技術展望:追求高效能、人工智慧和安全的融合的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
