首頁 電腦教學 電腦知識 二階數列的通項公式

二階數列的通項公式

Jan 14, 2024 pm 09:42 PM

數列通項公式的二階數列

根據一階遞歸數列的概念,我們可以定義同時包含an 2、an 1、an的遞推式為二階數列。與一階數列相比,二階數列的通項公式更加複雜。為了方便變形,讓我們先解釋二階數列的簡單形式:

an 2 = A * an 1 B * an , ( 同樣,A,B常係數) 基本思路類似於一階,只不過,在復合時要注意觀察待定係數和相應的項

原式複合: 設 原式變形後為此形式 an 2 - ψ * an 1 = ω (an 1 - ψ * an)

將該式與原式對比 ,可得

ψ ω = A 且 -(ψ*ω)= B

透過解這兩式可得到 ψ與ω的值,

設bn = an 1 - ψ*an , 原式就變成bn 1 = ω *bn 等比數列,可出bn 通項公式bn= f (n) ,

透過給定的等式an 1 - ψ*an = f(n),我們可以觀察到這個式子其實是一階數列的定義。這個式子只涉及到an 1和an兩個數列變數,因此可以將其視為“降階”,將一個二階數列化為一階數列,進而解決問題。

二階數列的通項公式

#

已知某數列的二次二階遞推公式通項

A(n 1)=A(n) A(n-1)-2A(n)*A(n-1)

變形為1-A(n 1)=(1-An)(1-A(n-1))

令Bn=1-An,得到

B(n 1)=Bn*B(n-1)

如果能保證Bn>0,則這裡可以兩邊取對數得到lgB(n 1)=lgBn lgB(n-1)

然後令Cn=lgB(n 1),則Cn是變成斐波那契數列,以下略

如果不能保證Bn>0,則觀察B3=B2B1

B4=(B2)^2*B1

B5=(B2)^3*(B1)^2

B6=(B2)^5*(B1)^3

注意Bn=(B2)^x*(B1)^y

#顯然x,y都是菲波那契數列,以下略

(關於菲波那契數列,可以在網路上搜,它的通項比較複雜,這裡沒寫)

注意用上面的方法解出來的結果可能是Cn或Bn的,需要最後進行轉換An=1-Bn,別忘了

二階遞推公式怎麼推通項公式?

a(n 1) pan qa(n-1)=0

設a(n 1) xan=y[an xa(n-1)]

a(n 1) (x-y)an-xya(n-1)=0

x-y=p

xy=-q

x1=p √(p^2-4q),y1=√(p^2-4q),

x2=p-√(p^2-4q),y2=-√(p^2-4q),

a(n 1) x1an=y1[an x1a(n-1)]

a(n 1) x2an=y2[an x2a(n-1)]

兩式相除:

[a(n 1) x1an]/[a(n 1) x2an]=(y1/y2){[an x1a(n-1)]/[an x2a(n-1)]}

設bn=[a(n 1) x1an]/[a(n 1) x2an]

bn=(y1/y2)b(n-1)=-b(n-1)

bn=b1(-1)^(n-1),b1=[a2 x1a1]/[a2 x2a1]

[a(n 1) x1an]/[a(n 1) x2an]=b1(-1)^(n-1)

a(n 1) x1an=b1[a(n 1) x2an](-1)^(n-1)

=[b1(-1)^(n-1)]a(n 1) [b1(-1)^(n-1)]x2an

[1-b1(-1)^(n-1)]a(n 1)={[b1(-1)^(n-1)]x2-x1}an

[1-b1(-1)^(n-2)]an={[b1(-1)^(n-2)]x2-x1}a(n-1)

[1-b1(-1)^(n-3)]a(n-1)={[b1(-1)^(n-3)]x2-x1}a(n-2)

……

[1-b1(-1)^2]a4={[b1(-1)^2]x2-x1}a3

[1-b1(-1)^1]a3={[b1(-1)^1]x2-x1}a2

[1-b1(-1)^0]a2={[b1(-1)^0]x2-x1}a1

兩邊相乘:

[1-b1(-1)^(n-2)][1-b1(-1)^(n-3)]…[1-b1(-1)^2][1-b1 (-1)^1][1-b1(-1)^0]an

={[b1(-1)^(n-2)]x2-x1}{[b1(-1)^(n-3)]x2-x1}…{[b1(-1)^ 2]x2-x1}{[b1(-1)^1]x2-x1}{[b1(-1)^0]x2-x1}a1

兩邊的係數都為已知,an已出(只要提供a1)。

如果p、q為具體數,兩邊可以化簡。

以上是二階數列的通項公式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
2 週前 By 尊渡假赌尊渡假赌尊渡假赌
倉庫:如何復興隊友
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒險:如何獲得巨型種子
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

如何求解Windows錯誤代碼' Invalid_data_access_trap” (0x00000004) 如何求解Windows錯誤代碼' Invalid_data_access_trap” (0x00000004) Mar 11, 2025 am 11:26 AM

如何求解Windows錯誤代碼' Invalid_data_access_trap” (0x00000004)

ENE SYS維護:使系統順利運行的技巧和技巧 ENE SYS維護:使系統順利運行的技巧和技巧 Mar 07, 2025 pm 03:09 PM

ENE SYS維護:使系統順利運行的技巧和技巧

在ENE SYS實施期間避免的5個常見錯誤 在ENE SYS實施期間避免的5個常見錯誤 Mar 07, 2025 pm 03:11 PM

在ENE SYS實施期間避免的5個常見錯誤

如何編輯註冊表? (警告:謹慎使用!) 如何編輯註冊表? (警告:謹慎使用!) Mar 21, 2025 pm 07:46 PM

如何編輯註冊表? (警告:謹慎使用!)

發現如何在Windows設置中修復驅動健康警告 發現如何在Windows設置中修復驅動健康警告 Mar 19, 2025 am 11:10 AM

發現如何在Windows設置中修復驅動健康警告

如何管理Windows的服務? 如何管理Windows的服務? Mar 21, 2025 pm 07:52 PM

如何管理Windows的服務?

為什麼驅動器aSio.sys不加載 為什麼驅動器aSio.sys不加載 Mar 10, 2025 pm 07:58 PM

為什麼驅動器aSio.sys不加載

哪個應用程序使用ene.sys 哪個應用程序使用ene.sys Mar 12, 2025 pm 01:25 PM

哪個應用程序使用ene.sys

See all articles