目錄
MoE架構
Pytorch程式碼
测试
总结
首頁 科技週邊 人工智慧 利用PyTorch實現混合專家模型(MoE)

利用PyTorch實現混合專家模型(MoE)

Jan 16, 2024 am 08:42 AM
人工智慧 pytorch moe

Mixtral 8x7B的推出在開放AI領域引起了廣泛關注,特別是混合專家(Mixture-of-Experts:MoEs)這一概念被大家所熟知。混合專家(MoE)概念象徵著協作智能,體現了整體大於部分總和的理念。 MoE模型整合了多種專家模型的優勢,以提供更準確的預測。它由一個門控網絡和一組專家網絡構成,每個專家網絡都擅長處理特定任務的不同方面。透過合理分配任務和權重,MoE模型能夠利用專家的專長,進而提升整體的預測表現。這種協作式的智慧模型為AI領域的發展帶來了新的突破,將在未來的應用中發揮重要作用。

本文將使用PyTorch實作MoE模型。在介紹具體程式碼前,先簡單介紹混合專家的體系結構。

MoE架構

MoE由兩種類型的網路組成:(1)專家網路和(2)門控網路。

專家網路是一種採用專有模型的方法,在資料的一個子集中得到良好的表現。它的核心理念是透過多個優勢互補的專家來涵蓋問題空間,確保全面解決問題。每個專家模型經過訓練,具備獨特的能力和經驗,進而提升整體系統的表現和效果。透過專家網路的使用,可以有效地應對複雜的任務和需求,提供更好的解決方案。

門控網路是一種用於指揮、協調或管理專家貢獻的網路。它透過學習和權衡不同網路對不同類型輸入的處理能力,來決定哪個網路最擅長處理特定的輸入。訓練有素的門控網路可以評估新的輸入向量,並根據專家的熟練程度將處理任務分配給最合適的專家或專家組合。門控網路會根據專家的輸出與目前輸入的相關性動態調整權重,以確保個人化的回應。這種動態調整權重的機制使得門控網路能夠靈活地適應不同的情境和需求。

利用PyTorch實現混合專家模型(MoE)

上圖顯示了MoE中的處理流程。混合專家模型的優點在於它的簡單性。透過學習複雜的問題空間以及專家在解決問題時的反應,MoE模型有助於產生比單一專家更好的解決方案。門控網路作為一個有效的管理者,評估情境並將任務傳遞給最佳專家。當新資料輸入時,模型可以透過重新評估專家對新輸入的優勢來適應,從而產生靈活的學習方法。 簡而言之,MoE模型利用多位專家的知識和經驗來解決複雜的問題。透過一個門控網路的管理,模型能夠根據不同的情境選擇最適合的專家來處理任務。這種方法的優點在於它能夠產生比單一專家更好的解決方案,並且能夠靈活地適應新的輸入資料。總的來說,MoE模型是一種有效且簡單的方法,可以用於解決各種複雜的問題。

MoE為部署機器學習模型提供了巨大的好處。以下是兩個顯著的好處。

MoE的核心優勢在於其多元化和專業化的專家網絡。 MoE的設定能夠高精度地處理多個領域的問題,這是單一模型難以達到的。

MoE具有固有的可擴展性。隨著任務複雜性的增加,更多的專家可以無縫地整合到系統中,擴大專業知識的範圍,而不需要改變其他專家模型。換句話說,MoE能夠將預先訓練過的專家打包到機器學習系統中,幫助系統應對不斷增長的任務要求。

混合專家模型在許多領域都有應用,包括推薦系統、語言建模和各種複雜的預測任務。有傳言稱,GPT-4是由多個專家組成的。儘管我們無法確認,但類似gpt -4的模型將透過MoE方法利用多個模型的力量來提供最佳結果。

Pytorch程式碼

我們這裡不討論Mixtral 8x7B這種大模型中使用的MOE技術,而是我們寫一個簡單的、可以應用在任何任務中的自訂MOE,透過程式碼我們可以了解MOE的工作原理,這樣對理解MOE在大模型中的工作方式是非常有幫助的。

下面我們將一段一段介紹PyTorch的程式碼實作。

導入庫:

import torch import torch.nn as nn import torch.optim as optim
登入後複製

定義專家模型:

class Expert(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(Expert, self).__init__() self.layer1 = nn.Linear(input_dim, hidden_dim) self.layer2 = nn.Linear(hidden_dim, output_dim)  def forward(self, x): x = torch.relu(self.layer1(x)) return torch.softmax(self.layer2(x), dim=1)
登入後複製

這裡我們定義了一個簡單的專家模型,可以看到它是一個2層的mlp,使用了relu激活,最後使用softmax輸出分類機率。

定義門控模型:

#
# Define the gating model class Gating(nn.Module): def __init__(self, input_dim,num_experts, dropout_rate=0.1): super(Gating, self).__init__()  # Layers self.layer1 = nn.Linear(input_dim, 128) self.dropout1 = nn.Dropout(dropout_rate)  self.layer2 = nn.Linear(128, 256) self.leaky_relu1 = nn.LeakyReLU() self.dropout2 = nn.Dropout(dropout_rate)  self.layer3 = nn.Linear(256, 128) self.leaky_relu2 = nn.LeakyReLU() self.dropout3 = nn.Dropout(dropout_rate)  self.layer4 = nn.Linear(128, num_experts)  def forward(self, x): x = torch.relu(self.layer1(x)) x = self.dropout1(x)  x = self.layer2(x) x = self.leaky_relu1(x) x = self.dropout2(x)  x = self.layer3(x) x = self.leaky_relu2(x) x = self.dropout3(x)  return torch.softmax(self.layer4(x), dim=1)
登入後複製

门控模型更复杂,有三个线性层和dropout层用于正则化以防止过拟合。它使用ReLU和LeakyReLU激活函数引入非线性。最后一层的输出大小等于专家的数量,并对这些输出应用softmax函数。输出权重,这样可以将专家的输出与之结合。

说明:其实门控网络,或者叫路由网络是MOE中最复杂的部分,因为它涉及到控制输入到那个专家模型,所以门控网络也有很多个设计方案,例如(如果我没记错的话)Mixtral 8x7B 只是取了8个专家中的top2。所以我们这里不详细讨论各种方案,只是介绍其基本原理和代码实现。

完整的MOE模型:

class MoE(nn.Module): def __init__(self, trained_experts): super(MoE, self).__init__() self.experts = nn.ModuleList(trained_experts) num_experts = len(trained_experts) # Assuming all experts have the same input dimension input_dim = trained_experts[0].layer1.in_features self.gating = Gating(input_dim, num_experts)  def forward(self, x): # Get the weights from the gating network weights = self.gating(x)  # Calculate the expert outputs outputs = torch.stack([expert(x) for expert in self.experts], dim=2)  # Adjust the weights tensor shape to match the expert outputs weights = weights.unsqueeze(1).expand_as(outputs)  # Multiply the expert outputs with the weights and # sum along the third dimension return torch.sum(outputs * weights, dim=2)
登入後複製

这里主要看前向传播的代码,通过输入计算出权重和每个专家给出输出的预测,最后使用权重将所有专家的结果求和最终得到模型的输出。

这个是不是有点像“集成学习”。

测试

下面我们来对我们的实现做个简单的测试,首先生成一个简单的数据集:

# Generate the dataset num_samples = 5000 input_dim = 4 hidden_dim = 32  # Generate equal numbers of labels 0, 1, and 2 y_data = torch.cat([ torch.zeros(num_samples // 3), torch.ones(num_samples // 3), torch.full((num_samples - 2 * (num_samples // 3),), 2)# Filling the remaining to ensure exact num_samples ]).long()  # Biasing the data based on the labels x_data = torch.randn(num_samples, input_dim)  for i in range(num_samples): if y_data[i] == 0: x_data[i, 0] += 1# Making x[0] more positive elif y_data[i] == 1: x_data[i, 1] -= 1# Making x[1] more negative elif y_data[i] == 2: x_data[i, 0] -= 1# Making x[0] more negative  # Shuffle the data to randomize the order indices = torch.randperm(num_samples) x_data = x_data[indices] y_data = y_data[indices]  # Verify the label distribution y_data.bincount()  # Shuffle the data to ensure x_data and y_data remain aligned shuffled_indices = torch.randperm(num_samples) x_data = x_data[shuffled_indices] y_data = y_data[shuffled_indices]  # Splitting data for training individual experts # Use the first half samples for training individual experts x_train_experts = x_data[:int(num_samples/2)] y_train_experts = y_data[:int(num_samples/2)]  mask_expert1 = (y_train_experts == 0) | (y_train_experts == 1) mask_expert2 = (y_train_experts == 1) | (y_train_experts == 2) mask_expert3 = (y_train_experts == 0) | (y_train_experts == 2)  # Select an almost equal number of samples for each expert num_samples_per_expert = \ min(mask_expert1.sum(), mask_expert2.sum(), mask_expert3.sum())  x_expert1 = x_train_experts[mask_expert1][:num_samples_per_expert] y_expert1 = y_train_experts[mask_expert1][:num_samples_per_expert]  x_expert2 = x_train_experts[mask_expert2][:num_samples_per_expert] y_expert2 = y_train_experts[mask_expert2][:num_samples_per_expert]  x_expert3 = x_train_experts[mask_expert3][:num_samples_per_expert] y_expert3 = y_train_experts[mask_expert3][:num_samples_per_expert]  # Splitting the next half samples for training MoE model and for testing x_remaining = x_data[int(num_samples/2)+1:] y_remaining = y_data[int(num_samples/2)+1:]  split = int(0.8 * len(x_remaining)) x_train_moe = x_remaining[:split] y_train_moe = y_remaining[:split]  x_test = x_remaining[split:] y_test = y_remaining[split:]  print(x_train_moe.shape,"\n", x_test.shape,"\n", x_expert1.shape,"\n", x_expert2.shape,"\n", x_expert3.shape)
登入後複製

这段代码创建了一个合成数据集,其中包含三个类标签——0、1和2。基于类标签对特征进行操作,从而在数据中引入一些模型可以学习的结构。

数据被分成针对个别专家的训练集、MoE模型和测试集。我们确保专家模型是在一个子集上训练的,这样第一个专家在标签0和1上得到很好的训练,第二个专家在标签1和2上得到更好的训练,第三个专家看到更多的标签2和0。

我们期望的结果是:虽然每个专家对标签0、1和2的分类准确率都不令人满意,但通过结合三位专家的决策,MoE将表现出色。

模型初始化和训练设置:

# Define hidden dimension output_dim = 3 hidden_dim = 32  epochs = 500 learning_rate = 0.001   # Instantiate the experts expert1 = Expert(input_dim, hidden_dim, output_dim) expert2 = Expert(input_dim, hidden_dim, output_dim) expert3 = Expert(input_dim, hidden_dim, output_dim)  # Set up loss criterion = nn.CrossEntropyLoss()  # Optimizers for experts optimizer_expert1 = optim.Adam(expert1.parameters(), lr=learning_rate) optimizer_expert2 = optim.Adam(expert2.parameters(), lr=learning_rate) optimizer_expert3 = optim.Adam(expert3.parameters(), lr=learning_rate)
登入後複製

实例化了专家模型和MoE模型。定义损失函数来计算训练损失,并为每个模型设置优化器,在训练过程中执行权重更新。

训练的步骤也非常简单

# Training loop for expert 1 for epoch in range(epochs):optimizer_expert1.zero_grad()outputs_expert1 = expert1(x_expert1)loss_expert1 = criterion(outputs_expert1, y_expert1)loss_expert1.backward()optimizer_expert1.step()  # Training loop for expert 2 for epoch in range(epochs):optimizer_expert2.zero_grad()outputs_expert2 = expert2(x_expert2)loss_expert2 = criterion(outputs_expert2, y_expert2)loss_expert2.backward()optimizer_expert2.step()  # Training loop for expert 3 for epoch in range(epochs):optimizer_expert3.zero_grad()outputs_expert3 = expert3(x_expert3)loss_expert3 = criterion(outputs_expert3, y_expert3)loss_expert3.backward()
登入後複製

每个专家使用基本的训练循环在不同的数据子集上进行单独的训练。循环迭代指定数量的epoch。

下面是我们MOE的训练

# Create the MoE model with the trained experts moe_model = MoE([expert1, expert2, expert3])  # Train the MoE model optimizer_moe = optim.Adam(moe_model.parameters(), lr=learning_rate) for epoch in range(epochs):optimizer_moe.zero_grad()outputs_moe = moe_model(x_train_moe)loss_moe = criterion(outputs_moe, y_train_moe)loss_moe.backward()optimizer_moe.step()
登入後複製

MoE模型是由先前训练过的专家创建的,然后在单独的数据集上进行训练。训练过程类似于单个专家的训练,但现在门控网络的权值在训练过程中更新。

最后我们的评估函数:

# Evaluate all models def evaluate(model, x, y):with torch.no_grad():outputs = model(x)_, predicted = torch.max(outputs, 1)correct = (predicted == y).sum().item()accuracy = correct / len(y)return accuracy
登入後複製

evaluate函数计算模型在给定数据上的精度(x代表样本,y代表预期标签)。准确度计算为正确预测数与预测总数之比。

结果如下:

accuracy_expert1 = evaluate(expert1, x_test, y_test) accuracy_expert2 = evaluate(expert2, x_test, y_test) accuracy_expert3 = evaluate(expert3, x_test, y_test) accuracy_moe = evaluate(moe_model, x_test, y_test)  print("Expert 1 Accuracy:", accuracy_expert1) print("Expert 2 Accuracy:", accuracy_expert2) print("Expert 3 Accuracy:", accuracy_expert3) print("Mixture of Experts Accuracy:", accuracy_moe)  #Expert 1 Accuracy: 0.466 #Expert 2 Accuracy: 0.496 #Expert 3 Accuracy: 0.378 #Mixture of Experts Accuracy: 0.614
登入後複製

可以看到

专家1正确预测了测试数据集中大约46.6%的样本的类标签。

专家2表现稍好,正确预测率约为49.6%。

专家3在三位专家中准确率最低,正确预测的样本约为37.8%。

而MoE模型显著优于每个专家,总体准确率约为61.4%。

总结

我们测试的输出结果显示了混合专家模型的强大功能。该模型通过门控网络将各个专家模型的优势结合起来,取得了比单个专家模型更高的精度。门控网络有效地学习了如何根据输入数据权衡每个专家的贡献,以产生更准确的预测。混合专家利用了各个模型的不同专业知识,在测试数据集上提供了更好的性能。

同时也说明我们可以在现有的任务上尝试使用MOE来进行测试,也可以得到更好的结果。

以上是利用PyTorch實現混合專家模型(MoE)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

使用Rag和Sem-Rag提供上下文增強AI編碼助手 使用Rag和Sem-Rag提供上下文增強AI編碼助手 Jun 10, 2024 am 11:08 AM

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 Jun 11, 2024 pm 03:57 PM

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

七個很酷的GenAI & LLM技術性面試問題 七個很酷的GenAI & LLM技術性面試問題 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 Jul 25, 2024 am 06:42 AM

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

你所不知道的機器學習五大學派 你所不知道的機器學習五大學派 Jun 05, 2024 pm 08:51 PM

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

PRO | 為什麼基於 MoE 的大模型更值得關注? PRO | 為什麼基於 MoE 的大模型更值得關注? Aug 07, 2024 pm 07:08 PM

2023年,幾乎AI的每個領域都在以前所未有的速度進化,同時,AI也不斷地推動著具身智慧、自動駕駛等關鍵賽道的技術邊界。在多模態趨勢下,Transformer作為AI大模型主流架構的局面是否會撼動?為何探索基於MoE(專家混合)架構的大模型成為業界新趨勢?大型視覺模型(LVM)能否成為通用視覺的新突破? ……我們從過去的半年發布的2023年本站PRO會員通訊中,挑選了10份針對以上領域技術趨勢、產業變革進行深入剖析的專題解讀,助您在新的一年裡為大展宏圖做好準備。本篇解讀來自2023年Week50

SOTA性能,廈大多模態蛋白質-配體親和力預測AI方法,首次結合分子表面訊息 SOTA性能,廈大多模態蛋白質-配體親和力預測AI方法,首次結合分子表面訊息 Jul 17, 2024 pm 06:37 PM

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

See all articles