首頁 科技週邊 人工智慧 谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

Jan 16, 2024 am 11:24 AM
四足機器人 理論 互動式系統

人類和四足機器人之間簡單有效的互動是創造能幹的智慧助理機器人的途徑,其昭示著這樣一個未來:科技以超乎我們想像的方式改善我們的生活。對於這樣的人類-機器人互動系統,關鍵是讓四足機器人有能力回應自然語言指令。

最近大型語言模式(LLM)發展迅速,已經展現了執行高層規劃的潛力。然而,對 LLM 來說,要理解低層指令仍然很難,例如關節角度目標或馬達扭矩,尤其是對於本身就不穩定、必需高頻控制訊號的足式機器人。因此,大多數現有工作都會假設已為 LLM 提供了決定機器人行為的高層 API,而這就從根本上限制了系統的表現能力。

在CoRL 2023 論文《SayTap: Language to Quadrupedal Locomotion》中,GoogleDeepMind 與東京大學提出了一種新方法,該方法使用足部接觸模式作為連接人類的自然語言指令與輸出低階指令的運動控制器的橋樑。

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

  • 論文網址:https://arxiv.org/abs/2306.07580
  • 計畫網站: https://saytap.github.io/

#足部接觸模式(foot contact pattern)是指四足智能體在移動時足放在地上的順序和方式。他們基於此開發出了一種互動式四足機器人系統,讓使用者可以靈活地制定不同的運動行為,例如使用者可以使用簡單的語言命令機器人走、跑、跳或執行其它動作。

他們的貢獻包括一個 LLM prompt 設計、一個獎勵函數和一個能讓 SayTap 控制器使用可行的接觸模式分佈的方法。

研究顯示 SayTap 控制器能夠實現多種運動模式,而這些能力還能遷移用於真實機器人硬體。

SayTap 方法

#SayTap 方法使用了接觸模式模板,該模板是一個由0 和1 構成的4 X T 矩陣,其中0 表示智能體的腳在空中,1 表示腳落在地面。由上至下,此矩陣的每一行分別給出了左前足(FL)、右前足(FR)、左後足(RL)、右後足(RR)的足部接觸模式。 SayTap 的控制頻率為 50 Hz,即每個 0 或 1 持續 0.02 秒。這項研究將所需足部接觸模式定義為一個大小為 L_w、形狀為 4 X L_w 的循環滑動視窗。此滑動視窗會從接觸模式模板中提取四足的接地標誌,其指示了在時間 t 1 和 t L_w 之間機器人腳是在地面還是在空中。下圖給出了 SayTap 方法的概況。

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

SayTap 方法概述

SayTap 引入的所需足部接觸模式可作為自然語言使用者指令與運動控制器之間的新介面。運動控制器是用於完成主要任務的(例如遵循指定的速度)以及用於在特定時間將機器人腳放在地上,以使實現的足部接觸模式盡可能接近所需的接觸模式。

為了做到這一點,在每個時間步驟,運動控制器以所需的足部接觸模式為輸入,再加上本體感官資料(如關節位置和速度)及任務相關輸入(如特定於使用者的速度命令)。 DeepMind 使用了強化學習來訓練此運動控制器,並將其表徵成一個深度神經網路。在控制器的訓練期間,研究者使用了一個隨機生成器來採樣所需的足部接觸模式,然後優化策略以輸出能實現所需足部接觸模式的低層機器人動作。而在測試時間,則是使用 LLM 將使用者指令轉譯成足部接觸模式。

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

SayTap 使用足部接觸模式作為連接自然語言使用者指令和低層控制命令的橋樑。 SayTap 既支援簡單直接的指令(例如「向前慢速小跑」),也支援模糊的使用者指令(例如「好消息,我們這個週末去野餐!)。透過基於強化學習的運動控制器,能讓四足機器人根據命令做出反應。

研究表明:使用適當設計的prompt,LLM 有能力準確地將用戶命令映射到特定格式的足部接觸模式模板中,即便使用者指令是非結構化的或模糊的。在訓練中,研究者使用隨機模式產生器產生了多種接觸模式模板,它們有不同的模式長度T、基於給定步態類型G 在一個週期內的足地接觸比,使得運動控制器能夠在廣泛的運動模式分佈上學習,獲得更好的泛化能力。更多詳情請參閱論文。

#實驗結果

使用僅包含三種常見足部接觸模式上下文樣本的簡單prompt,LLM 可將各種人類命令準確地轉譯成接觸模式,甚至泛化用於那些沒有明確指定機器人應當如何行為的情況。

SayTap prompt 簡潔緊湊,包含四個組分:

(1) 用於描述LLM 應完成的任務的一般性說明;
(2) 步態定義,用於提醒LLM 專注於有關四足步態的基本知識以及它們與情緒的關聯;
(3) 輸出格式定義;
(4) 演示範例,讓LLM 學習在上下文中的情況。

研究者也設定了五種速度,讓機器人可以前進或後退、快速或慢速、或保持不動。

#遵循簡單和直接的命令

#下面的動圖展示了SayTap 成功執行直接清晰命令的範例。儘管某些命令並不包含在三個上下文示例之中,但仍然可以引導LLM 表達出其在預訓練階段學習到的內部知識,這會用到prompt 中的“步態定義模組”,即上面prompt 中第二個模組。

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

遵循非結構化或模糊的命令

但更有趣的是SayTap 處理非結構化和模糊指令的能力。只需一點提示即可將某些步態與一般情緒印象聯繫起來,例如機器人在聽到讓其興奮的消息(如“我們去野餐吧!”)後會上下跳躍。此外,它還能準確地呈現出場景,例如當被告知地面非常熱時,機器人會快速移動,讓腳盡量少接觸地面。

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐

#

總結與未來工作

#SayTap 是四足機器人的互動式系統,其允許使用者靈活地制定不同的運動行為。 SayTap 引入了所需足部接觸模式作為自然語言與低階控制器之間的介面。這種新介面簡單直接又很靈活,此外,它既支援機器人遵循直接指令,也支援機器人遵從沒有明確說明機器人行為方式的命令。

DeepMind 的研究者表示,未來一大研究方向是測試隱含特定感受的指令是否能讓 LLM 輸出所需步態。在上面結果的步態定義模組中,研究者提供了一個將開心情緒與跳動步態聯繫起來的句子。如果能提供更多訊息,也許能增強 LLM 解釋指令的能力,例如解讀隱含的感受。在實驗評估中,開心情緒與跳動步態的連結能讓機器人在遵從模糊的人類指令行動時表現得充滿活力。另一個有趣的未來研究方向是引入多模態輸入,例如視訊和音訊。理論上講,從這些訊號轉譯而來的足部接觸模式也適用於這裡新提出的工作流程,並有望開創更多有趣的用例。

原文連結:https://blog.research.google/2023/08/saytap-language-to-quadrupedal.html
#

以上是谷歌用大型模型訓練機器狗理解模糊指令,激動不已準備野餐的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1662
14
CakePHP 教程
1419
52
Laravel 教程
1312
25
PHP教程
1262
29
C# 教程
1235
24
突破傳統缺陷檢測的界限,\'Defect Spectrum\'首次實現超高精度豐富語意的工業缺陷檢測。 突破傳統缺陷檢測的界限,\'Defect Spectrum\'首次實現超高精度豐富語意的工業缺陷檢測。 Jul 26, 2024 pm 05:38 PM

在現代製造業中,精準的缺陷檢測不僅是確保產品品質的關鍵,更是提升生產效率的核心。然而,現有的缺陷檢測資料集常常缺乏實際應用所需的精確度和語意豐富性,導致模型無法辨識特定的缺陷類別或位置。為了解決這個難題,由香港科技大學廣州和思謀科技組成的頂尖研究團隊,創新地開發了「DefectSpectrum」資料集,為工業缺陷提供了詳盡、語義豐富的大規模標註。如表一所示,相較於其他工業資料集,「DefectSpectrum」資料集提供了最多的缺陷標註(5438張缺陷樣本),最細緻的缺陷分類(125個缺陷類別

英偉達對話模式ChatQA進化到2.0版本,上下文長度提到128K 英偉達對話模式ChatQA進化到2.0版本,上下文長度提到128K Jul 26, 2024 am 08:40 AM

開放LLM社群正是百花齊放、競相爭鳴的時代,你能看到Llama-3-70B-Instruct、QWen2-72B-Instruct、Nemotron-4-340B-Instruct、Mixtral-8x22BInstruct-v0.1等許多表現優良的模型。但是,相較於以GPT-4-Turbo為代表的專有大模型,開放模型在許多領域仍有明顯差距。在通用模型之外,也有一些專精關鍵領域的開放模型已被開發出來,例如用於程式設計和數學的DeepSeek-Coder-V2、用於視覺-語言任務的InternVL

數百萬晶體資料訓練,解決晶體學相位問題,深度學習方法PhAI登Science 數百萬晶體資料訓練,解決晶體學相位問題,深度學習方法PhAI登Science Aug 08, 2024 pm 09:22 PM

編輯|KX時至今日,晶體學所測定的結構細節和精度,從簡單的金屬到大型膜蛋白,是任何其他方法都無法比擬的。然而,最大的挑戰——所謂的相位問題,仍然是從實驗確定的振幅中檢索相位資訊。丹麥哥本哈根大學研究人員,開發了一種解決晶體相問題的深度學習方法PhAI,利用數百萬人工晶體結構及其相應的合成衍射數據訓練的深度學習神經網絡,可以產生準確的電子密度圖。研究表明,這種基於深度學習的從頭算結構解決方案方法,可以以僅2埃的分辨率解決相位問題,該分辨率僅相當於原子分辨率可用數據的10%到20%,而傳統的從頭算方

GoogleAI拿下IMO奧數銀牌,數學推理模型AlphaProof面世,強化學習 is so back GoogleAI拿下IMO奧數銀牌,數學推理模型AlphaProof面世,強化學習 is so back Jul 26, 2024 pm 02:40 PM

對AI來說,奧數不再是問題了。本週四,GoogleDeepMind的人工智慧完成了一項壯舉:用AI做出了今年國際數學奧林匹克競賽IMO的真題,並且距拿金牌僅一步之遙。上週剛結束的IMO競賽共有六道賽題,涉及代數、組合學、幾何和數論。谷歌提出的混合AI系統做對了四道,獲得28分,達到了銀牌水準。本月初,UCLA終身教授陶哲軒剛剛宣傳了百萬美元獎金的AI數學奧林匹克競賽(AIMO進步獎),沒想到7月還沒過,AI的做題水平就進步到了這種水平。 IMO上同步做題,做對了最難題IMO是歷史最悠久、規模最大、最負

PRO | 為什麼基於 MoE 的大模型更值得關注? PRO | 為什麼基於 MoE 的大模型更值得關注? Aug 07, 2024 pm 07:08 PM

2023年,幾乎AI的每個領域都在以前所未有的速度進化,同時,AI也不斷地推動著具身智慧、自動駕駛等關鍵賽道的技術邊界。在多模態趨勢下,Transformer作為AI大模型主流架構的局面是否會撼動?為何探索基於MoE(專家混合)架構的大模型成為業界新趨勢?大型視覺模型(LVM)能否成為通用視覺的新突破? ……我們從過去的半年發布的2023年本站PRO會員通訊中,挑選了10份針對以上領域技術趨勢、產業變革進行深入剖析的專題解讀,助您在新的一年裡為大展宏圖做好準備。本篇解讀來自2023年Week50

為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 Jul 25, 2024 am 06:42 AM

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

準確率達60.8%,浙大基於Transformer的化學逆合成預測模型,登Nature子刊 準確率達60.8%,浙大基於Transformer的化學逆合成預測模型,登Nature子刊 Aug 06, 2024 pm 07:34 PM

編輯|KX逆合成是藥物發現和有機合成中的關鍵任務,AI越來越多地用於加快這一過程。現有AI方法性能不盡人意,多樣性有限。在實踐中,化學反應通常會引起局部分子變化,反應物和產物之間存在很大重疊。受此啟發,浙江大學侯廷軍團隊提出將單步逆合成預測重新定義為分子串編輯任務,迭代細化目標分子串以產生前驅化合物。並提出了基於編輯的逆合成模型EditRetro,該模型可以實現高品質和多樣化的預測。大量實驗表明,模型在標準基準資料集USPTO-50 K上取得了出色的性能,top-1準確率達到60.8%。

Nature觀點,人工智慧在醫學上的測試一片混亂,該怎麼做? Nature觀點,人工智慧在醫學上的測試一片混亂,該怎麼做? Aug 22, 2024 pm 04:37 PM

編輯|ScienceAI基於有限的臨床數據,數百種醫療演算法已被批准。科學家們正在討論由誰來測試這些工具,以及如何最好地進行測試。 DevinSingh在急診室目睹了一名兒科患者因長時間等待救治而心臟驟停,這促使他探索AI在縮短等待時間中的應用。 Singh利用了SickKids急診室的分診數據,與同事們建立了一系列AI模型,用於提供潛在診斷和推薦測試。一項研究表明,這些模型可以加快22.3%的就診速度,將每位需要進行醫學檢查的患者的結果處理速度加快近3小時。然而,人工智慧演算法在研究中的成功只是驗證此

See all articles