Thoughts on Small Datum – Part 3_MySQL
Background: If you did not read my first blog post about why I am sharing my thoughts on the benchmarks published by Mark Callaghan on Small Datum you may want to skim through it now for a little context:“Thoughts on Small Datum – Part 1”
~~~~~~~~~~~~~~~~~~~~~~~~
Last time, in“Thoughts on Small Datum – Part 2”I shared my cliff notes and a graph onMark Callaghan’s (@markcallaghan) March 11th insertion rate benchmarks using flash storage media. In those tests he comparesMySQL outfitted with theInnoDBstorage engine against two distributions ofMongoDB: basic MongoDB fromMongoDB, Inc.andTokuMX(the high-performance distribution of MongoDB from Tokutek).
Later, in his March 24th“TokuMX, MongoDB and InnoDB Versus the Insert Benchmark with Disks”Mark presents similar benchmark findings for a new set of insertion rate tests using a different benchmark and the same DBMS products. This time however he uses servers configured with traditional disk storage media instead of flash. In addition he does a number of things to configure the products and tests differently than he did in the flash storage benchmarks.
As the saying goes, a picture is worth a thousand words. The X-axis here is the number of rows being inserted at each stage of the test. The Y-axis is the insertion rate recorded at those levels (and in this case,biggeris better).
As you can see, Mark found that TokuMX outperforms MySQL/InnoDB as well as basic MongoDB. He also found that shortly after 500M rows it became impractical to test MongoDB (it was taking unreasonably long time to let the test run to completion). The same thing happened with MySQL/InnoDB after 1.6B rows. TokuMX was still running strong at 2B rows.
Note: Mark tests several different configurations of MongoDB, trying to find the optimum configuration. For the purposes of my visual aid I selected the fastest / best MongoDB configuration at each level of 100M rows. That’s not very scientific of me but I wanted to be as fair as possible in the visual comparison.
Bottom Line:Like the flash storage test covered last time, the tests with traditional disk storage show that both MySQL with InnoDB and TokuMX significantly outperform basic MongoDB in benchmarks testing for write-intensive applications. Both MongoDB (540M rows) and MySQL/InnoDB (1.6B rows) become unresponsive in these tests as the database gets large.
This suggests that if your application is a write-intensive NoSQL one, and your servers are outfitted with traditional disk storage, it will perform significantly better on the TokuMX high-performance distribution of MongoDB. And that, with TokuMX performance will not degrade significantly as the database grows. It also shows basic MongoDB may not even be suitable for write-intensive applications that are expected to grow beyond 500M rows.
One footnote: TokuDB (the Tokutek high-performance MySQL storage engine alternative to InnoDB that employees the same underlying technology as TokuMX) isnotcovered in Mark’s benchmark. That’s too bad because it delivers better performance and scalability than InnoDB for your NewSQL applications.
You can read all the gory details on Mark’sMarch 24th insertion rate benchmark here. And, you can download and tryTokuMX for yourself (for free) here.
As always, your thoughts and comments are welcome below. You can also reach me on Twitter via@dcrosenlund.
Next time, in Thoughts on Small Datum – Part 4, this marketer’s summary and graphs for Mark’sIO-bound point queries tests using sysbench.

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

InnoDB使用redologs和undologs確保數據一致性和可靠性。 1.redologs記錄數據頁修改,確保崩潰恢復和事務持久性。 2.undologs記錄數據原始值,支持事務回滾和MVCC。

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

MySQL与其他编程语言相比,主要用于存储和管理数据,而其他语言如Python、Java、C 则用于逻辑处理和应用开发。MySQL以其高性能、可扩展性和跨平台支持著称,适合数据管理需求,而其他语言在各自领域如数据分析、企业应用和系统编程中各有优势。

MySQL索引基数对查询性能有显著影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。
