首頁 > 科技週邊 > 人工智慧 > 用範例示範如何理解二進位類別的混淆矩陣

用範例示範如何理解二進位類別的混淆矩陣

WBOY
發布: 2024-01-22 14:30:22
轉載
752 人瀏覽過

混淆矩陣是一種評估模式,幫助機器學習工程師更了解模型效能。本文以一個二元類不平衡資料集為例,測試集由60個正類樣本和40個負類樣本組成,用於評估機器學習模型。

二元類別資料集僅有兩個不同類別的數據,可簡單命名為「正面」和「負面」類別。

現在,要完全理解這個二分類問題的混淆矩陣,我們首先需要熟悉以下術語:

True Positive(TP)是指屬於正類的樣本被正確分類。

True Negative(TN)是指屬於負類別的樣本被正確分類。

False Positive(FP)是指屬於陰性類別的樣本被錯誤地分類為屬於陽性類別。

False Negative(FN)是指屬於正類別的樣本被錯誤地歸類為負類別。

用範例示範如何理解二進位類別的混淆矩陣

我們可以透過訓練模型獲得的混淆矩陣範例如上所示,用於此範例資料集。

將第一列中的數字相加,我們看到正類別中的樣本總數為45 15=60。將第二列的數字相加得到負類中的樣本數,在本例中為40。所有方框中的數字總和給出了評估的樣本總數。此外,正確的分類是矩陣的對角線元素-正類45個,負類32個。

現在,模型將左下角的框歸類為正類樣本,所以它被稱為"FN",因為模型預測的"陰性"是錯誤的。同理,右上框預計屬於負類,但被模型分類為"正"。因此,它們被稱為“FP”。我們可以使用矩陣中的這四個不同數字來更仔細地評估模型。

以上是用範例示範如何理解二進位類別的混淆矩陣的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:163.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板