視覺Mamba模型的Swin時刻,中科院、華為等推出VMamba
Transformer在大模型領域的地位無可撼動。然而,隨著模型規模的擴展和序列長度的增加,傳統的Transformer架構的限制開始凸顯。幸運的是,Mamba的問世正迅速改變這一現狀。它出色的性能立即引起了AI界的轟動。 Mamba的出現為大規模模型的訓練和序列處理帶來了巨大的突破。它的優勢在AI界迅速蔓延,為未來的研究和應用帶來了巨大的希望。
上週四, Vision Mamba(Vim)的提議已經展現了它成為視覺基礎模型的下一代骨幹的巨大潛力。每隔一天,中國科學院、華為、鵬城實驗室的研究人員提出了 VMamba:一種具有全局感受野、線性複雜度的視覺 Mamba 模型。 這項工作標誌著視覺 Mamba 模型 Swin 時刻的來臨。
- #論文標題:VMamba: Visual State Space Model
- 論文網址: https://arxiv.org/abs/2401.10166
- 程式碼位址: https://github.com/MzeroMiko/VMamba
#CNN 和視覺Transformer(ViT)是目前最主流的兩類基礎視覺模型。儘管 CNN 具有線性複雜度,ViT 具有更強大的數據擬合能力,然而代價是計算複雜較高。 研究者認為 ViT 之所以擬合能力強,是因為其具有全域感受野和動態權重。受 Mamba 模型的啟發,研究者設計出在線性複雜度下同時具有這兩種優秀性質的模型,即 Visual State Space Model(VMamba)。 大量的實驗證明,VMamba 在各種視覺任務中表現卓越。 如下圖所示,VMamba-S 在 ImageNet-1K 上達到 83.5% 的正確率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。
方法介紹
VMamba 的成功關鍵在於採用了S6 模型,這個模型最初是為了解決自然語言處理(NLP)任務而設計的。與 ViT 的注意力機制不同,S6 模型透過將 1D 向量中的每個元素與先前的掃描資訊進行交互,有效地將二次複雜度降低為線性。這種互動方式使得 VMamba 在處理大規模資料時更加有效率。因此,S6 模型的引入為 VMamba 的成功打下了堅實的基礎。
然而,由於視覺訊號(如圖像)不像文字序列那樣具有天然的有序性,因此無法在視覺訊號上簡單地對S6 中的資料掃描方法進行直接應用。為此研究者設計了 Cross-Scan 掃描機制。 Cross-Scan 模組(CSM)採用四向掃描策略,即從特徵圖的四個角落同時掃描(見上圖)。 此策略確保特徵中的每個元素都以不同方向從所有其他位置整合訊息,從而形成全局感受野,又不增加線性計算複雜度。
在 CSM 的基礎上,作者設計了 2D-selective-scan(SS2D)模組。如上圖所示,SS2D 包含了三個步驟:
- scan expand 將一個2D 特徵沿著4 個不同方向(左上、右下、左下、右上)展平為1D 向量。
- S6 block 獨立地將上步得到的 4 個 1D 向量送入 S6 運算。
- scan merge 將得到的 4 個 1D 向量融合為一個 2D 特徵輸出。
上圖為本文所提出的 VMamba 結構圖。 VMamba 的整體框架與主流的視覺模型類似,其主要差異在於基本模組(VSS block)中採用的算符不同。 VSS block 採用了上述介紹的 2D-selective-scan 操作,即 SS2D。 SS2D 保證了 VMamba 在線性複雜度的代價下實現全域感受野。
#實驗結果
ImageNet 分類
##透過比較實驗結果不難看出,在相似的參數量和FLOPs 下:
- #VMamba-T 取得了 82.2% 的效能,超過RegNetY- 4G 達2.2%、DeiT-S 達2.4%、Swin-T 達0.9%。
- VMamba-S 取得了 83.5% 的效能,超過 RegNetY-8G 達 1.8%,Swin-S 達 0.5%。
- VMamba-B 取得了 83.2% 的效能(有 bug,正確結果會盡快在 Github 頁面更新),比 RegNetY 高 0.3%。
這些結果遠高於 Vision Mamba (Vim) 模型,充分驗證了 VMamba 的潛力。
COCO 目標偵測
#在COOCO 資料集上,VMamba 也保持卓越性能:在fine-tune 12 epochs 的情況下,VMamba-T/S/B 分別達到46.5%/48.2%/48.5% mAP,超過了Swin-T/S/B 達3.8%/3.6%/1.6 % mAP,超過ConvNeXt-T/S/B 達2.3%/2.8%/1.5% mAP。這些結果驗證了 VMamba 在視覺下游實驗中完全 work,展現出了能平替主流基礎視覺模型的潛力。
ADE20K 語意分割
在ADE20K 上,VMamba 也表現出卓越性能。 VMamba-T 模型在 512 × 512 解析度下實現 47.3% 的 mIoU,這個分數超越了所有競爭對手,包括 ResNet,DeiT,Swin 和 ConvNeXt。這種優勢在 VMamba-S/B 模型下依然能夠維持。
分析實驗
有效感受野
VMamba 具有全域的有效感受野,其他模型中只有DeiT 具有這個特性。但值得注意的是,DeiT 的代價是平方級的複雜度,而 VMamaba 是線性複雜度。
輸入尺度縮放
- #上圖(a)顯示,VMamba 在不同輸入影像尺寸下展現最穩定的性能(不微調)。有趣的是,隨著輸入尺寸從224 × 224 增加到384 × 384,只有VMamba 表現出效能明顯上升的趨勢(VMamba-S 從83.5% 上升到84.0%),突顯了其對輸入影像大小變化的穩健性。
- 上圖(b)顯示,VMamba 系列模型隨著輸入變大,複雜度呈現線性成長,這與 CNN 模型是一致的。
最後,讓我們期待更多基於 Mamba 的視覺模型被提出,並列於 CNNs 和 ViTs,為基礎視覺模型提供第三種選擇。
以上是視覺Mamba模型的Swin時刻,中科院、華為等推出VMamba的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

最近,軍事圈被這個消息刷屏了:美軍的戰鬥機,已經能由AI完成全自動空戰了。是的,就在最近,美軍的AI戰鬥機首次公開,揭開了神秘面紗。這架戰鬥機的全名是可變穩定性飛行模擬器測試飛機(VISTA),由美空軍部長親自搭乘,模擬了一對一的空戰。 5月2日,美國空軍部長FrankKendall在Edwards空軍基地駕駛X-62AVISTA升空注意,在一小時的飛行中,所有飛行動作都由AI自主完成! Kendall表示——在過去的幾十年中,我們一直在思考自主空對空作戰的無限潛力,但它始終顯得遙不可及。然而如今,
