使用遷移學習的實用技巧在電腦視覺應用中的影像分類
遷移學習是深度學習中強大的技術,可以將已經學到的知識應用於不同但相關的任務。在電腦視覺中,這項技術尤其有用,因為收集和註釋大量的影像資料成本非常高。本文將探討在影像分類領域中使用遷移學習的實用技巧。
首要考慮的是資料集,使用遷移學習時需要一個龐大且多樣化的訓練資料集。為了節省時間成本,可以選擇使用公共且開源的資料集。
深度遷移學習(DTL)的第一步是建立良好的基準模型。基線模型的建立可以透過選擇適當的圖像尺寸、主幹網路、批量大小、學習率和epoch數來實現。這些選擇決定了模型的性能和訓練效果。透過快速迭代和試驗,基線模型可以幫助我們進行後續的深度遷移學習研究和實驗。
在建立了良好的基線模型之後,下一步是對學習率和epoch數進行微調。這一步是深度遷移學習中非常重要的,因為它會對模型的表現產生重大影響。在選擇學習率和epoch數時,需要根據主幹網路和資料集的特點來確定。 對於學習率,一個良好的起始範圍通常在0.0001和0.001之間。如果學習率設定得過高,可能導致模型無法收斂;而學習率設定得太低,則可能導致模型收斂速度過慢。因此,透過實驗和觀察模型的訓練情況,逐步調整學習率的大小,以達到最佳表現。 對於epoch數,一個良好的起始範圍通常在2和10之間。 epoch數指的是訓練集中所有樣本都完整使用一次的次數。較小的epoch數可能導致模型欠擬合,
在調整學習率和輪數後,接下來可以考慮擴充訓練影像,以提升模型效能。常用的增強方法包括水平和垂直翻轉、調整大小、旋轉、移動、剪切以及Cutmix和Mixup等技術。這些增強方法能夠隨機改變訓練影像,使模型更加穩健。
下一步是最佳化模型和輸入的複雜度。可以透過調整模型的複雜性或調整主幹來達到目標。這一步驟旨在找到最適合特定任務和資料的模型。
在調整模型和輸入複雜度後,可以透過增加影像大小、嘗試不同的主幹或架構來進一步優化模型。
最後一步是在完整的訓練資料上重新訓練模型並進行模型混合,這一步非常關鍵,因為訓練模型所使用的資料越多,其效能就會越好。模型混合是一種技術,它將多個模型進行組合,從而提高整體模型的性能。在進行模型混合時,重要的是使用相同的設定進行不同的調整,例如使用不同的主幹網路、資料增強方法、訓練週期和影像大小等等。這樣可以增加模型的多樣性,並提高其泛化能力。
除了這些步驟之外,還有一些技巧可用於提高模型效能。其中之一是測試時間增強(TTA),透過對測試資料應用增強技術,可以提高模型效能。此外,另一種方法是在推理過程中增加圖像大小,這有助於提高模型效能。最後,後處理和2nd stage模型的使用也是提高模型性能的有效手段。
以上是使用遷移學習的實用技巧在電腦視覺應用中的影像分類的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

寫在前面今天我們探討下深度學習技術如何改善在複雜環境中基於視覺的SLAM(同時定位與地圖建構)表現。透過將深度特徵提取和深度匹配方法相結合,這裡介紹了一種多功能的混合視覺SLAM系統,旨在提高在諸如低光條件、動態光照、弱紋理區域和嚴重抖動等挑戰性場景中的適應性。我們的系統支援多種模式,包括拓展單目、立體、單目-慣性以及立體-慣性配置。除此之外,也分析如何將視覺SLAM與深度學習方法結合,以啟發其他研究。透過在公共資料集和自採樣資料上的廣泛實驗,展示了SL-SLAM在定位精度和追蹤魯棒性方面優

潛在空間嵌入(LatentSpaceEmbedding)是將高維度資料對應到低維度空間的過程。在機器學習和深度學習領域中,潛在空間嵌入通常是透過神經網路模型將高維輸入資料映射為一組低維向量表示,這組向量通常被稱為「潛在向量」或「潛在編碼」。潛在空間嵌入的目的是捕捉資料中的重要特徵,並將其表示為更簡潔和可理解的形式。透過潛在空間嵌入,我們可以在低維空間中對資料進行視覺化、分類、聚類等操作,從而更好地理解和利用資料。潛在空間嵌入在許多領域中都有廣泛的應用,如影像生成、特徵提取、降維等。潛在空間嵌入的主要

目標偵測是電腦視覺領域的重要任務,用於識別影像或影片中的物體並定位其位置。這項任務通常分為單階段和雙階段兩類演算法,它們在準確性和穩健性方面有所不同。單階段目標偵測演算法單階段目標偵測演算法將目標偵測轉換為分類問題,其優點是速度快,只需一步即可完成偵測。然而,由於過於簡化,精度通常不如雙階段目標偵測演算法。常見的單階段目標偵測演算法包括YOLO、SSD和FasterR-CNN。這些演算法一般以整個影像作為輸入,透過運行分類器來辨識目標物體。與傳統的兩階段目標偵測演算法不同,它們不需要事先定義區域,而是直接預

舊照片修復是利用人工智慧技術對舊照片進行修復、增強和改善的方法。透過電腦視覺和機器學習演算法,該技術能夠自動識別並修復舊照片中的損壞和缺陷,使其看起來更加清晰、自然和真實。舊照片修復的技術原理主要包括以下幾個面向:1.影像去雜訊和增強修復舊照片時,需要先進行去雜訊和增強處理。可以使用影像處理演算法和濾波器,如均值濾波、高斯濾波、雙邊濾波等,來解決雜訊和色斑問題,進而提升照片的品質。 2.影像復原和修復在舊照片中,可能存在一些缺陷和損壞,例如刮痕、裂縫、褪色等。這些問題可以透過影像復原和修復演算法來解決

超解析度影像重建是利用深度學習技術,如卷積神經網路(CNN)和生成對抗網路(GAN),從低解析度影像中生成高解析度影像的過程。該方法的目標是透過將低解析度影像轉換為高解析度影像,從而提高影像的品質和細節。這種技術在許多領域都有廣泛的應用,如醫學影像、監視攝影、衛星影像等。透過超解析度影像重建,我們可以獲得更清晰、更具細節的影像,有助於更準確地分析和識別影像中的目標和特徵。重建方法超解析度影像重建的方法通常可以分為兩類:基於插值的方法和基於深度學習的方法。 1)基於插值的方法基於插值的超解析度影像重

在當今科技日新月異的浪潮中,人工智慧(ArtificialIntelligence,AI)、機器學習(MachineLearning,ML)與深度學習(DeepLearning,DL)如同璀璨星辰,引領著資訊科技的新浪潮。這三個詞彙經常出現在各種前沿討論和實際應用中,但對於許多初涉此領域的探索者來說,它們的具體含義及相互之間的內在聯繫可能仍籠罩著一層神秘面紗。那讓我們先來看看這張圖。可以看出,深度學習、機器學習和人工智慧之間存在著緊密的關聯和遞進關係。深度學習是機器學習的一個特定領域,而機器學習

自2006年深度學習概念被提出以來,20年快過去了,深度學習作為人工智慧領域的一場革命,已經催生了許多具有影響力的演算法。那麼,你所認為深度學習的top10演算法有哪些呢?以下是我心目中深度學習的頂尖演算法,它們在創新、應用價值和影響力方面都佔有重要地位。 1.深度神經網路(DNN)背景:深度神經網路(DNN)也叫多層感知機,是最普遍的深度學習演算法,發明之初由於算力瓶頸而飽受質疑,直到近些年算力、數據的爆發才迎來突破。 DNN是一種神經網路模型,它包含多個隱藏層。在該模型中,每一層將輸入傳遞給下一層,並

尺度不變特徵變換(SIFT)演算法是一種用於影像處理和電腦視覺領域的特徵提取演算法。該演算法於1999年提出,旨在提高電腦視覺系統中的物體辨識和匹配性能。 SIFT演算法具有穩健性和準確性,被廣泛應用於影像辨識、三維重建、目標偵測、視訊追蹤等領域。它透過在多個尺度空間中檢測關鍵點,並提取關鍵點周圍的局部特徵描述符來實現尺度不變性。 SIFT演算法的主要步驟包括尺度空間的建構、關鍵點偵測、關鍵點定位、方向分配和特徵描述子產生。透過這些步驟,SIFT演算法能夠提取出具有穩健性和獨特性的特徵,從而實現對影像的高效
