介紹常用的無監督學習演算法
無監督學習是一種機器學習方法,不使用標記範例,其目標是發現資料中的模式或結構。演算法僅提供輸入數據,自行發現數據的結構。
1.聚類演算法
此演算法用於根據樣本的相似性將樣本分組到集群中。聚類的目標是將資料分成幾組,使得每組中的範例相似性高。
有許多聚類方法,包括基於質心的方法、基於密度的方法和分層方法。基於質心的方法,例如k-means,將資料分割為K個簇,其中每個簇由質心定義(即,代表性範例)。基於密度的方法,例如DBSCAN,根據範例的密度將資料分割為聚類。層次方法,例如凝聚聚類,建構了一個層次結構的聚類,其中每個範例最初被認為是它自己的聚類,然後聚類根據它們的相似性合併在一起。
2.降維演算法
降維演算法是用來減少資料集中特徵數量的一種技術。它的目標是在保留盡可能多的信息的同時,降低資料的複雜性和防止過度擬合。在機器學習中,降維演算法經常被應用於提高學習演算法的效能。此外,它還可以用於資料視覺化,透過減少維度的數量,將資料映射到較低維度的空間中,使得資料更易於管理和繪製。
降維的方法有很多,包括線性方法和非線性方法。線性方法包括諸如主成分分析(PCA)和線性判別分析(LDA)之類的技術,這些技術可以找到捕獲資料中最大變異數的特徵的線性組合。非線性方法包括t-SNE和ISOMAP等技術,它們保留了資料的局部結構。
除了線性和非線性方法之外,還有特徵選擇方法(選擇最重要特徵的子集)和特徵提取方法(將資料轉換到維度較少的新空間)。
3.異常檢測
這是一種無監督學習,涉及識別與其餘資料相比不尋常或意外的範例。異常檢測演算法通常用於詐欺檢測或識別故障設備。異常檢測有很多方法,包括統計方法、基於距離的方法和基於密度的方法。統計方法涉及計算資料的統計特性,例如平均值和標準差,以及識別超出特定範圍的範例。基於距離的方法涉及計算範例與大部分資料之間的距離,並識別距離太遠的範例。基於密度的方法涉及識別資料低密度區域中的範例
4.自動編碼器
自動編碼器是一種用於降維的神經網路。它的工作原理是將輸入資料編碼為低維表示,然後將其解碼回原始空間。自動編碼器通常用於資料壓縮、去噪和異常檢測等任務。它們對於高維且具有大量特徵的資料集特別有用,因為它們可以學習捕獲最重要特徵的資料的低維表示。
5.產生模型
這些演算法用於學習資料的分佈並產生與訓練資料相似的新範例。一些流行的生成模型包括生成對抗網路(GAN)和變分自動編碼器(VAE)。生成模型有很多應用,包括資料生成、圖像生成和語言建模。它們也用於風格轉換和圖像超解析度等任務。
6.關聯規則學習
此演算法用於發現資料集中變數之間的關係。它通常用於購物車分析,以識別經常購買的商品。一種流行的關聯規則學習演算法是Apriori演算法。
7.自組織映射(SOM)
#自組織映射(SOM)是一種用於可視化和特徵學習的神經網絡架構。它們是一種無監督學習演算法,可用於發現高維度資料中的結構。 SOM通常用於資料視覺化、聚類和異常檢測等任務。它們對於可視化二維空間中的高維度資料特別有用,因為它們可以揭示原始資料中可能不明顯的模式和關係。
以上是介紹常用的無監督學習演算法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,
