深度殘差網路如何克服梯度消失問題?
殘差網路是流行的深度學習模型,透過引入殘差塊來解決梯度消失問題。本文從梯度消失問題的本質原因著手,詳解殘差網路的解決方法。
一、梯度消失問題的本質原因
#在深度神經網路中,每層的輸出是透過上一層的輸入與權重矩陣相乘並經過活化函數計算得到的。隨著網路層數的增加,每一層的輸出都會受到前面各層輸出的影響。這意味著即使是微小的權重矩陣和激活函數的變化,也會對整個網路的輸出產生影響。 在反向傳播演算法中,梯度用於更新網路的權重。梯度的計算需要透過鍊式法則將後一層的梯度傳遞到前一層。因此,前面各層的梯度也會對梯度的計算產生影響。這種影響會在更新權重時累積,並且會在訓練過程中傳遞到整個網路。 因此,深度神經網路中的每一層都是相互關聯的,它們的輸出和梯度都會互相影響。這就要求我們在設計和訓練網路時要仔細考慮每一層的權重和激活函數的選擇,以及梯度的計算和傳遞方式,以確保網路能夠有效地學習和適應不同的任務和資料。
在深度神經網路中,當網路層數較多時,梯度往往會出現「消失」或「爆炸」的問題。梯度消失的原因在於,當激活函數的導數小於1時,梯度會逐漸縮小,導致越往前的層梯度越小,最終變得無法更新,從而導致網路無法學習。梯度爆炸的原因則在於,當激活函數的導數大於1時,梯度會逐漸增大,導致越往前的層梯度越大,最終導致網路權重溢出,也會導致網路無法學習。
二、殘差網路的解決方案
#殘差網路透過引入殘差塊解決了梯度消失的問題。在每個網路層之間,殘差塊將輸入直接加到輸出上,使得網路更容易學習出恆等映射。這種跨層連接的設計使得梯度能夠更好地傳播,有效地緩解了梯度消失的現象。這樣的解決方案能夠提高網路的訓練效率和效能。
具體來說,殘差區塊的結構x表示輸入,F(x)表示網路學習得到的映射,H(x)表示恆等映射。殘差塊的輸出為H(x) F(x),即輸入加上學習所得的映射。
這樣做的好處在於,當網路學習到一個恆等映射時,F(x)就為0,此時殘差區塊的輸出就等於輸入,即H( x) 0=H(x)。這就避免了梯度消失的問題,因為即使F(x)的梯度為0,H(x)的梯度仍然可以透過跨層連接傳遞到前面的層,從而實現了更好的梯度流動。
此外,殘差網路也採用了「批次歸一化」和「預激活」等技術來進一步增強網路的效能和穩定性。其中,批歸一化用來解決梯度消失和梯度爆炸問題,而預激活則可以更好地引入非線性,提高網路的表達能力。
以上是深度殘差網路如何克服梯度消失問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

寫在前面今天我們探討下深度學習技術如何改善在複雜環境中基於視覺的SLAM(同時定位與地圖建構)表現。透過將深度特徵提取和深度匹配方法相結合,這裡介紹了一種多功能的混合視覺SLAM系統,旨在提高在諸如低光條件、動態光照、弱紋理區域和嚴重抖動等挑戰性場景中的適應性。我們的系統支援多種模式,包括拓展單目、立體、單目-慣性以及立體-慣性配置。除此之外,也分析如何將視覺SLAM與深度學習方法結合,以啟發其他研究。透過在公共資料集和自採樣資料上的廣泛實驗,展示了SL-SLAM在定位精度和追蹤魯棒性方面優

自2006年深度學習概念被提出以來,20年快過去了,深度學習作為人工智慧領域的一場革命,已經催生了許多具有影響力的演算法。那麼,你所認為深度學習的top10演算法有哪些呢?以下是我心目中深度學習的頂尖演算法,它們在創新、應用價值和影響力方面都佔有重要地位。 1.深度神經網路(DNN)背景:深度神經網路(DNN)也叫多層感知機,是最普遍的深度學習演算法,發明之初由於算力瓶頸而飽受質疑,直到近些年算力、數據的爆發才迎來突破。 DNN是一種神經網路模型,它包含多個隱藏層。在該模型中,每一層將輸入傳遞給下一層,並

在當今科技日新月異的浪潮中,人工智慧(ArtificialIntelligence,AI)、機器學習(MachineLearning,ML)與深度學習(DeepLearning,DL)如同璀璨星辰,引領著資訊科技的新浪潮。這三個詞彙經常出現在各種前沿討論和實際應用中,但對於許多初涉此領域的探索者來說,它們的具體含義及相互之間的內在聯繫可能仍籠罩著一層神秘面紗。那讓我們先來看看這張圖。可以看出,深度學習、機器學習和人工智慧之間存在著緊密的關聯和遞進關係。深度學習是機器學習的一個特定領域,而機器學習

雙向LSTM模型是一種用於文字分類的神經網路。以下是一個簡單範例,示範如何使用雙向LSTM進行文字分類任務。首先,我們需要匯入所需的函式庫和模組:importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Emquencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Emquencesfromkeras.modelsimportSequentialfromkeras.layers

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显著提高。这表明,在单个统一的深度学习框架内,可以实现

概述為了讓ModelScope的使用者能夠快速、方便的使用平台提供的各類模型,提供了一套功能完備的Pythonlibrary,其中包含了ModelScope官方模型的實現,以及使用這些模型進行推理,finetune等任務所需的資料預處理,後處理,效果評估等功能相關的程式碼,同時也提供了簡單易用的API,以及豐富的使用範例。透過呼叫library,使用者可以只寫短短的幾行程式碼,就可以完成模型的推理、訓練和評估等任務,也可以在此基礎上快速進行二次開發,實現自己的創新想法。目前library提供的演算法模型,

卷積神經網路在影像去噪任務中表現出色。它利用學習到的濾波器對雜訊進行過濾,從而恢復原始影像。本文詳細介紹了基於卷積神經網路的影像去噪方法。一、卷積神經網路概述卷積神經網路是一種深度學習演算法,透過多個卷積層、池化層和全連接層的組合來進行影像特徵學習和分類。在卷積層中,透過卷積操作提取影像的局部特徵,從而捕捉影像中的空間相關性。池化層則透過降低特徵維度來減少計算量,並保留主要特徵。全連接層負責將學習到的特徵與標籤進行映射,以實現影像的分類或其他任務。這種網路結構的設計使得卷積神經網路在影像處理與識

卷積神經網路(CNN)和Transformer是兩種不同的深度學習模型,它們在不同的任務上都展現了出色的表現。 CNN主要用於電腦視覺任務,如影像分類、目標偵測和影像分割等。它透過卷積操作在影像上提取局部特徵,並透過池化操作進行特徵降維和空間不變性。相較之下,Transformer主要用於自然語言處理(NLP)任務,如機器翻譯、文字分類和語音辨識等。它使用自註意力機制來建模序列中的依賴關係,避免了傳統的循環神經網路中的順序計算。儘管這兩種模型用於不同的任務,但它們在序列建模方面有相似之處,因此
