目錄
计算机视觉的价值
计算机视觉工作步骤和原理
计算机视觉的应用领域
计算机视觉研究方向
首頁 科技週邊 人工智慧 探索電腦視覺(CV):意義、原理、應用與研究

探索電腦視覺(CV):意義、原理、應用與研究

Jan 23, 2024 pm 04:30 PM
人工智慧 電腦視覺

探索電腦視覺(CV):意義、原理、應用與研究

计算机视觉(CV)是人工智能(AI)的一个领域,旨在使计算机能够模仿人类的视觉系统,以更好地理解和解释数字图像和视频的内容。这个过程主要涉及图像的获取、筛选、分析、识别和信息提取。可以说,AI让计算机具备了思考的能力,而CV则赋予了它们观察和理解的能力。

计算机视觉的价值

计算机视觉系统经过训练和优化,可以实时分析大量产品或流程,帮助发现问题。其速度、客观性、连续性、准确性和可扩展性超越了人类的能力。它能够检查产品、观察基础设施或生产过程,并进行实时分析。这种技术的应用使得问题的发现更加高效和准确。

最新的计算机视觉深度学习模型在现实世界的图像识别任务中表现出了超越人类的准确性和性能。这些模型在面部识别、对象检测和图像分类等方面取得了显著的突破。随着技术的进步,计算机视觉在各行业中得到了广泛的应用。它在安全和医学成像、制造、汽车、农业、建筑、智慧城市、交通等领域都发挥着重要作用。而且,随着技术的不断发展,计算机视觉变得更加灵活和可扩展,这也为更多的实际应用案例带来了可能性。

据有相关媒体预估,计算机视觉市场规模到2028年将达到1440亿美元。

计算机视觉工作步骤和原理

让我们先了解计算机视觉的基本工作步骤:

步骤1,图像采集,相机或图像传感器输入数字图像。

步骤2,预处理,原始图像输入需要进行预处理,以优化后续计算机视觉任务的性能。预处理包括降噪、对比度增强、重新缩放或图像裁剪。

步骤3,算法处理,计算机视觉算法对每个图像或视频帧执行对象检测、图像分割和分类。

步骤4,规则处理,输出信息需要根据用例条件规则进行处理。这部分根据从计算机视觉任务中获得的信息执行自动化。

再来看看计算机视觉工作原理:

现代计算机视觉系统将图像处理、机器学习和深度学习技术相结合,依靠模式识别以及深度学习来自我训练和理解视觉数据。传统的计算机视觉使用机器学习,而现在深度学习方法已经发展成为该领域的更好解决方案。

现代计算机视觉应用中的许多高性能方法都基于卷积神经网络(CNN)。这种分层神经网络让计算机能够从上下文认识图像数据。如果有足够的数据,计算机就会学习如何区分图像。当图像数据通过模型时,计算机应用CNN来查看数据。CNN通过将图像分解成像素来帮助深度学习模型理解图像,这些像素被赋予标签以训练特定特征,即所谓的图像注释。模型使用标签执行卷积并对它看到的内容进行预测,并反复检查预测的准确性,直到预测符合预期。深度学习依赖于神经网络,并使用示例来解决问题。它通过使用标记数据进行自我学习,以识别示例中的常见用例。

计算机视觉的应用领域

制造业:工业计算机视觉在制造业中用于自动化产品检测、物体计数、过程自动化,并通过PPE检测和面罩检测提高员工安全。

医疗保健:在计算机视觉在医疗保健领域的应用中,一个突出的例子是自动人体跌倒检测,以创建跌倒风险评分并触发警报。

安防:在视频监控和安防中,进行人员检测,实现智能周界监控。

农业:计算视觉在农业中的用例是自动监测动物,及早发现动物疾病和异常。

智能城市:计算机视觉是智能城市中用于人群分析、交通分析、车辆计数和基础设施检查。

零售:零售店监控摄像头的视频可用于跟踪顾客的移动模式,进行人数统计或客流量分析。

保险:保险中的计算机视觉利用AI视觉进行自动化风险管理和评估、索赔管理和前瞻性分析。

物流:自动化,通过减少人为错误、预测性维护和加速整个供应链的运营来节省成本。

制药:制药行业的计算机视觉用于包装检测、胶囊识别以及设备清洁的视觉检测。

计算机视觉研究方向

对象识别:确定图像数据是否包含一个或多个指定或学习的对象或对象类。

面部识别:通过将人脸与数据库进行匹配来识别人脸。

物件偵測:針對特定條件分析影像數據,並定位給定類別的語義物件。

姿態估計:估計特定物體相對的方向和位置。

光學字元辨識:辨識影像中的字符,通常與文字編碼結合。

場景理解:將影像解析為有意義的片段以供分析。

運動分析:追蹤影像序列或影片中興趣點或物件的運動。

#

以上是探索電腦視覺(CV):意義、原理、應用與研究的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1322
25
PHP教程
1270
29
C# 教程
1250
24
位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 位元組跳動剪映推出 SVIP 超級會員:連續包年 499 元,提供多種 AI 功能 Jun 28, 2024 am 03:51 AM

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

使用Rag和Sem-Rag提供上下文增強AI編碼助手 使用Rag和Sem-Rag提供上下文增強AI編碼助手 Jun 10, 2024 am 11:08 AM

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

七個很酷的GenAI & LLM技術性面試問題 七個很酷的GenAI & LLM技術性面試問題 Jun 07, 2024 am 10:06 AM

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 微調真的能讓LLM學到新東西嗎:引入新知識可能讓模型產生更多的幻覺 Jun 11, 2024 pm 03:57 PM

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

你所不知道的機器學習五大學派 你所不知道的機器學習五大學派 Jun 05, 2024 pm 08:51 PM

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 為大模型提供全新科學複雜問答基準與評估體系,UNSW、阿貢、芝加哥大學等多家機構共同推出SciQAG框架 Jul 25, 2024 am 06:42 AM

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

分散式人工智慧盛會DAI 2024徵稿:Agent Day,強化學習之父Richard Sutton將出席!顏水成、Sergey Levine以及DeepMind科學家將做主旨報告 分散式人工智慧盛會DAI 2024徵稿:Agent Day,強化學習之父Richard Sutton將出席!顏水成、Sergey Levine以及DeepMind科學家將做主旨報告 Aug 22, 2024 pm 08:02 PM

會議簡介隨著科技的快速發展,人工智慧成為了推動社會進步的重要力量。在這個時代,我們有幸見證並參與分散式人工智慧(DistributedArtificialIntelligence,DAI)的創新與應用。分散式人工智慧是人工智慧領域的重要分支,這幾年引起了越來越多的關注。基於大型語言模型(LLM)的智能體(Agent)異軍突起,透過結合大模型的強大語言理解和生成能力,展現了在自然語言互動、知識推理、任務規劃等方面的巨大潛力。 AIAgent正在接棒大語言模型,成為目前AI圈的熱門話題。 Au

SK 海力士 8 月 6 日將展示 AI 相關新品:12 層 HBM3E、321-high NAND 等 SK 海力士 8 月 6 日將展示 AI 相關新品:12 層 HBM3E、321-high NAND 等 Aug 01, 2024 pm 09:40 PM

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在

See all articles