了解自動編碼器的訓練方法:從架構探究開始
雜訊資料是機器學習中常見的問題之一,自動編碼器是解決這類問題的有效方法。本文將介紹自動編碼器的結構和正確訓練方法。
自動編碼器是一種無監督學習的人工神經網絡,用於學習資料的編碼。其目標是透過訓練網路來捕捉輸入影像的關鍵特徵,並將其轉換為低維表示,常用於降維處理。
自動編碼器的架構
自動編碼器由3部分組成:
#1 .編碼器:將訓練-驗證-測試集輸入資料壓縮成編碼表示的模組,通常比輸入資料小幾個數量級。
2.瓶頸:包含壓縮知識表示的模組,因此是網路中最重要的部分。
3.解碼器:幫助網路「解壓縮」知識表示並從其編碼形式重構資料的模組。然後將輸出與地面實況進行比較。
整個架構看起來像這樣,如下圖:

編碼器、瓶頸和解碼器之間的關係
#編碼器
編碼器是一組卷積塊,後面是池化模組,將模型的輸入壓縮到稱為瓶頸的緊湊部分。
瓶頸之後是解碼器,它由一系列上取樣模組組成,用於將壓縮後的特徵恢復為影像形式。在簡單的自動編碼器的情況下,輸出預計與雜訊降低的輸入相同。
然而,對於變分自動編碼器,它是一個全新的圖像,由模型作為輸入提供的資訊形成。
瓶頸
作為神經網路中最重要的部分,會限制訊息從編碼器流向解碼器,只允許最重要的訊息通過。
由於瓶頸的設計是為了捕捉影像所擁有的特徵訊息,我們可以說瓶頸幫助形成輸入的知識表示。編碼器-解碼器結構幫助我們以資料的形式從圖像中提取更多信息,並為網路中的各種輸入之間建立有用的相關性。
作為輸入的壓縮表示的瓶頸會進一步防止神經網路記憶輸入和對資料的過度擬合。瓶頸越小,過度擬合的風險就越低。但非常小的瓶頸會限制可儲存的資訊量,這會增加重要資訊從編碼器的池化層中漏出的機會。
解碼器
最後,解碼器是一組上取樣和卷積塊,用於重建瓶頸的輸出。
由於解碼器的輸入是壓縮的知識表示,因此解碼器充當「解壓縮器」並從其潛在屬性重建圖像。
了解完自動編碼器的結果和關係後,我們接著來看如何正確訓練自動編碼器。
如何訓練自動編碼器?
在訓練自動編碼器之前需要設定4個超參數:
1.程式碼大小
程式碼大小或瓶頸大小是用於調整自動編碼器的最重要的超參數。瓶頸大小決定了必須壓縮多少資料。這也可以作為正規化項。
2.層數
與所有神經網路一樣,調整自動編碼器的一個重要超參數是編碼器和解碼器的深度。雖然較高的深度會增加模型的複雜性,但較低的深度處理速度較快。
3.每層節點數
每層節點數定義了我們每層使用的權重。通常,節點的數量隨著自動編碼器中每個後續層的減少而減少,因為這些層中的每一個的輸入在層中變得更小。
4.重建損失
我們用來訓練自動編碼器的損失函數高度依賴我們希望自動編碼器適應的輸入和輸出類型。如果我們處理影像數據,最受歡迎的重建損失函數是MSE損失函數和L1損失函數。如果輸入和輸出在[0,1]範圍內,就像在MNIST資料集中一樣,我們也可以使用二元交叉熵作為重建損失。
以上是了解自動編碼器的訓練方法:從架構探究開始的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,
