解析numpy函數的常用參數與用法
numpy是Python中常用的數值計算庫,提供了豐富的數值運算函數和資料結構,能夠方便快捷地進行數組運算和數值計算。本文將解析numpy函數的常用參數與用法,並提供具體的程式碼範例。
一、numpy函數的常用參數
範例:
import numpy as np a = np.array([1, 2, 3, 4]) # 定义一维数组 b = np.array([[1, 2], [3, 4]]) # 定义二维数组 print(a) # 输出:[1 2 3 4] print(b) # 输出:[[1 2] # [3 4]]
範例:
import numpy as np a = np.array([1, 2, 3], dtype=np.float) # 指定数组元素为浮点型 b = np.array([1, 2, 3], dtype=np.int) # 指定数组元素为整型 print(a) # 输出:[1. 2. 3.] print(b) # 输出:[1 2 3]
範例:
import numpy as np a = np.array([1, 2, 3, 4]) # 一维数组 b = np.array([[1, 2], [3, 4]]) # 二维数组 print(a.shape) # 输出:(4,) print(b.shape) # 输出:(2, 2)
範例:
import numpy as np a = np.array([[1, 2], [3, 4]]) print(np.sum(a, axis=0)) # 按列求和,输出:[4 6] print(np.sum(a, axis=1)) # 按行求和,输出:[3 7]
範例:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) c = np.zeros(3) np.add(a, b, out=c) # 将a和b相加,结果放在c中 print(c) # 输出:[5. 7. 9.]
二、numpy函數的常用用法
np.array()
、np.zeros()
、np.ones()
、np.arange( )
等。 範例:
import numpy as np a = np.array([1, 2, 3]) # 创建一维数组 b = np.zeros((2, 2)) # 创建全0的二维数组 c = np.ones((3, 3)) # 创建全1的二维数组 d = np.arange(0, 10, 2) # 创建一个等差数列 print(a) # 输出:[1 2 3] print(b) # 输出:[[0. 0.] # [0. 0.]] print(c) # 输出:[[1. 1. 1.] # [1. 1. 1.] # [1. 1. 1.]] print(d) # 输出:[0 2 4 6 8]
範例:
import numpy as np a = np.array([1, 2, 3]) b = np.array([4, 5, 6]) print(np.add(a, b)) # 数组相加,输出:[5 7 9] print(np.subtract(a, b)) # 数组相减,输出:[-3 -3 -3] print(np.multiply(a, b)) # 数组相乘,输出:[4 10 18] print(np.divide(a, b)) # 数组相除,输出:[0.25 0.4 0.5] print(np.sum(a)) # 数组求和,输出:6 print(np.mean(a)) # 数组平均值,输出:2
範例:
import numpy as np a = np.array([[1, 2], [3, 4]]) b = np.transpose(a) # 转置数组 c = np.reshape(a, (1, 4)) # 将数组重塑为1行4列的数组 d = np.concatenate((a, b), axis=1) # 按列合并数组 print(b) # 输出:[[1 3] # [2 4]] print(c) # 输出:[[1 2 3 4]] print(d) # 输出:[[1 2 1 3] # [3 4 2 4]]
本文介紹了numpy函數的常用參數與用法,並提供了具體的程式碼範例。掌握這些函數的用法,能夠更有效率地進行陣列運算和數值計算,提升程式效率。
以上是numpy函數常用參數和用法的分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!