首頁 資料庫 mysql教程 mysql数据库分组(GROUP BY)查询实例_MySQL

mysql数据库分组(GROUP BY)查询实例_MySQL

Jun 01, 2016 pm 01:18 PM
mysql 資料庫

bitsCN.com

1.使用松散(Loose)索引扫描实现 GROUP BY

何谓松散索引扫描实现 GROUP BY 呢?实际上就是当 MySQL 完全利用索引扫描来实现 GROUP BY 的时候,并不需要扫描所有满足条件的索引键即可完成操作得出结果。

下面我们通过一个示例来描述松散索引扫描实现 GROUP BY,在示例之前我们需要首先调整一下 group_message 表的索引,将 gmt_create 字段添加到 group_id 和 user_id 字段的索引中:

 代码如下 复制代码
1 sky@localhost : example 08:49:45> create index idx_gid_uid_gc
2
3 -> on group_message(group_id,user_id,gmt_create);
4
5 Query OK, rows affected (0.03 sec)
6
7 Records: 96 Duplicates: 0 Warnings: 0
8
9 sky@localhost : example 09:07:30> drop index idx_group_message_gid_uid
10
11 -> on group_message;
12
13 Query OK, 96 rows affected (0.02 sec)
14
15 Records: 96 Duplicates: 0 Warnings: 0

然后再看如下 Query 的执行计划:

 代码如下 复制代码

1 sky@localhost : example 09:26:15> EXPLAIN
2
3 -> SELECT user_id,max(gmt_create)
4
5 -> FROM group_message
6
7 -> WHERE group_id 8
9 -> GROUP BY group_id,user_idG
10
11 *************************** 1. row ***************************
12
13 id: 1
14
15 select_type: SIMPLE
16
17 table: group_message
18
19 type: range
20
21 possible_keys: idx_gid_uid_gc
22
23 key: idx_gid_uid_gc
24
25 key_len: 8
26
27 ref: NULL
28
29 rows: 4
30
31 Extra: Using where; Using index for group-by
32
33 1 row in set (0.00 sec)

我们看到在执行计划的 Extra 信息中有信息显示“Using index for group-by”,实际上这就是告诉我们,MySQL Query Optimizer 通过使用松散索引扫描来实现了我们所需要的 GROUP BY 操作。

下面这张图片描绘了扫描过程的大概实现:

要利用到松散索引扫描实现 GROUP BY,需要至少满足以下几个条件:

◆GROUP BY 条件字段必须在同一个索引中最前面的连续位置;

◆在使用GROUP BY 的同时,只能使用 MAX 和 MIN 这两个聚合函数;

◆如果引用到了该索引中 GROUP BY 条件之外的字段条件的时候,必须以常量形式存在;

为什么松散索引扫描的效率会很高?

因为在没有WHERE子句,也就是必须经过全索引扫描的时候, 松散索引扫描需要读取的键值数量与分组的组数量一样多,也就是说比实际存在的键值数目要少很多。而在WHERE子句包含范围判断式或者等值表达式的时候, 松散索引扫描查找满足范围条件的每个组的第1个关键字,并且再次读取尽可能最少数量的关键字。

2.使用紧凑(Tight)索引扫描实现 GROUP BY

紧凑索引扫描实现 GROUP BY 和松散索引扫描的区别主要在于他需要在扫描索引的时候,读取所有满足条件的索引键,然后再根据读取恶的数据来完成 GROUP BY 操作得到相应结果。

 代码如下 复制代码

1  sky@localhost : example 08:55:14> EXPLAIN
2
3 -> SELECT max(gmt_create)
4
5 -> FROM group_message
6
7 -> WHERE group_id = 2
8
9 -> GROUP BY user_idG
10
11 *************************** 1. row ***************************
12
13 id: 1
14
15 select_type: SIMPLE
16
17 table: group_message
18
19 type: ref
20
21 possible_keys: idx_group_message_gid_uid,idx_gid_uid_gc
22
23 key: idx_gid_uid_gc
24
25 key_len: 4
26
27 ref: const
28
29 rows: 4
30
31 Extra: Using where; Using index
32
33 1 row in set (0.01 sec)


这时候的执行计划的 Extra 信息中已经没有“Using index for group-by”了,但并不是说 MySQL 的 GROUP BY 操作并不是通过索引完成的,只不过是需要访问 WHERE 条件所限定的所有索引键信息之后才能得出结果。这就是通过紧凑索引扫描来实现 GROUP BY 的执行计划输出信息。

在 MySQL 中,MySQL Query Optimizer 首先会选择尝试通过松散索引扫描来实现 GROUP BY 操作,当发现某些情况无法满足松散索引扫描实现 GROUP BY 的要求之后,才会尝试通过紧凑索引扫描来实现。

当 GROUP BY 条件字段并不连续或者不是索引前缀部分的时候,MySQL Query Optimizer 无法使用松散索引扫描,设置无法直接通过索引完成 GROUP BY 操作,因为缺失的索引键信息无法得到。但是,如果 Query 语句中存在一个常量值来引用缺失的索引键,则可以使用紧凑索引扫描完成 GROUP BY 操作,因为常量填充了搜索关键字中的“差距”,可以形成完整的索引前缀。这些索引前缀可以用于索引查找。而如果需要排序GROUP BY结果,并且能够形成索引前缀的搜索关键字,MySQL还可以避免额外的排序操作,因为使用有顺序的索引的前缀进行搜索已经按顺序检索到了所有关键字。

3.使用临时表实现 GROUP BY

MySQL 在进行 GROUP BY 操作的时候要想利用所有,必须满足 GROUP BY 的字段必须同时存放于同一个索引中,且该索引是一个有序索引(如 Hash 索引就不能满足要求)。而且,并不只是如此,是否能够利用索引来实现 GROUP BY 还与使用的聚合函数也有关系。

前面两种 GROUP BY 的实现方式都是在有可以利用的索引的时候使用的,当 MySQL Query Optimizer 无法找到合适的索引可以利用的时候,就不得不先读取需要的数据,然后通过临时表来完成 GROUP BY 操作。

 代码如下 复制代码

1 sky@localhost : example 09:02:40> EXPLAIN
2
3 -> SELECT max(gmt_create)
4
5 -> FROM group_message
6
7 -> WHERE group_id > 1 and group_id 8
9 -> GROUP BY user_idG
10
11 *************************** 1. row ***************************
12 www.111cn.net
13 id: 1
14
15 select_type: SIMPLE
16
17 table: group_message
18
19 type: range
20
21 possible_keys: idx_group_message_gid_uid,idx_gid_uid_gc
22
23 key: idx_gid_uid_gc
24
25 key_len: 4
26
27 ref: NULL
28
29 rows: 32
30
31 Extra: Using where; Using index; Using temporary; Using filesort

这次的执行计划非常明显的告诉我们 MySQL 通过索引找到了我们需要的数据,然后创建了临时表,又进行了排序操作,才得到我们需要的 GROUP BY 结果。整个执行过程大概如下图所展示:

当 MySQL Query Optimizer 发现仅仅通过索引扫描并不能直接得到 GROUP BY 的结果之后,他就不得不选择通过使用临时表然后再排序的方式来实现 GROUP BY了。

在这样示例中即是这样的情况。 group_id 并不是一个常量条件,而是一个范围,而且 GROUP BY 字段为 user_id。所以 MySQL 无法根据索引的顺序来帮助 GROUP BY 的实现,只能先通过索引范围扫描得到需要的数据,然后将数据存入临时表,然后再进行排序和分组操作来完成 GROUP BY。

讲了这么多其实最简单的就是

(查询dedecms(织梦)程序的栏目标题表,以栏目id分组)

 代码如下 复制代码

SELECT *
FROM `dede_archives`
GROUP BY `typeid`
LIMIT 0 , 30

这样即可了

一些相关group by 实例

 代码如下 复制代码


--按某一字段分组取最大(小)值所在行的数据

/*
数据如下:
name val memo
a 2 a2(a的第二个值)
a 1 a1--a的第一个值
a 3 a3:a的第三个值
b 1 b1--b的第一个值
b 3 b3:b的第三个值
b 2 b2b2b2b2
b 4 b4b4
b 5 b5b5b5b5b5
*/

--创建表并插入数据:

create table tb(name varchar(10),val int,memo varchar(20))
insert into tb values('a', 2, 'a2(a的第二个值)')
insert into tb values('a', 1, 'a1--a的第一个值')
insert into tb values('a', 3, 'a3:a的第三个值')
insert into tb values('b', 1, 'b1--b的第一个值')
insert into tb values('b', 3, 'b3:b的第三个值')
insert into tb values('b', 2, 'b2b2b2b2')
insert into tb values('b', 4, 'b4b4')
insert into tb values('b', 5, 'b5b5b5b5b5')
go

--一、按name分组取val最大的值所在行的数据。

--方法1:select a.* from tb a where val = (select max(val) from tb where name = a.name) order by a.name
--方法2:
select a.* from tb a where not exists(select 1 from tb where name = a.name and val > a.val)
--方法3:
select a.* from tb a,(select name,max(val) val from tb group by name) b where a.name = b.name and a.val = b.val order by a.name
--方法4:
select a.* from tb a inner join (select name , max(val) val from tb group by name) b on a.name = b.name and a.val = b.val order by a.name
--方法5
select a.* from tb a where 1 > (select count(*) from tb where name = a.name and val > a.val ) order by a.name
/*
name val memo
---------- ----------- --------------------
a 3 a3:a的第三个值
b 5 b5b5b5b5b5

*/

本人推荐使用1,3,4,结果显示1,3,4效率相同,2,5效率差些,不过我3,4效率相同毫无疑问,1就不一样了,想不搞了。

--二、按name分组取val最小的值所在行的数据。

--方法1:select a.* from tb a where val = (select min(val) from tb where name = a.name) order by a.name
--方法2:
select a.* from tb a where not exists(select 1 from tb where name = a.name and val --方法3:
select a.* from tb a,(select name,min(val) val from tb group by name) b where a.name = b.name and a.val = b.val order by a.name
--方法4:
select a.* from tb a inner join (select name , min(val) val from tb group by name) b on a.name = b.name and a.val = b.val order by a.name
--方法5
select a.* from tb a where 1 > (select count(*) from tb where name = a.name and val /*
name val memo
---------- ----------- --------------------
a 1 a1--a的第一个值
b 1 b1--b的第一个值

*/

--三、按name分组取第一次出现的行所在的数据。

select a.* from tb a where val = (select top 1 val from tb where name = a.name) order by a.name
/*
name val memo
---------- ----------- --------------------
a 2 a2(a的第二个值)
b 1 b1--b的第一个值
*/

--四、按name分组随机取一条数据。

select a.* from tb a where val = (select top 1 val from tb where name = a.name order by newid()) order by a.name/*
name val memo
---------- ----------- --------------------
a 1 a1--a的第一个值
b 5 b5b5b5b5b5

*/

--五、按name分组取最小的两个(N个)val

select a.* from tb a where 2 > (select count(*) from tb where name = a.name and val select a.* from tb a where exists (select count(*) from tb where name = a.name and val /*
name val memo
---------- ----------- --------------------
a 1 a1--a的第一个值
a 2 a2(a的第二个值)
b 1 b1--b的第一个值
b 2 b2b2b2b2

*/

--六、按name分组取最大的两个(N个)val

select a.* from tb a where 2 > (select count(*) from tb where name = a.name and val > a.val ) order by a.name,a.val
select a.* from tb a where val in (select top 2 val from tb where name=a.name order by val desc) order by a.name,a.val
select a.* from tb a where exists (select count(*) from tb where name = a.name and val > a.val having Count(*) /*
name val memo
---------- ----------- --------------------
a 2 a2(a的第二个值)
a 3 a3:a的第三个值
b 4 b4b4
b 5 b5b5b5b5b5
*/


--七,假如整行数据有重复,所有的列都相同(例如下表中的第5,6两行数据完全相同)。
按name分组取最大的两个(N个)val

/*
数据如下:
name val memo
a 2 a2(a的第二个值)
a 1 a1--a的第一个值
a 1 a1--a的第一个值
a 3 a3:a的第三个值
a 3 a3:a的第三个值
b 1 b1--b的第一个值
b 3 b3:b的第三个值
b 2 b2b2b2b2
b 4 b4b4
b 5 b5b5b5b5b5

 你可能感兴趣的文章
  • mysql一对多关联查询的时候筛选条件
bitsCN.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

MySQL:世界上最受歡迎的數據庫的簡介 MySQL:世界上最受歡迎的數據庫的簡介 Apr 12, 2025 am 12:18 AM

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

apache怎麼連接數據庫 apache怎麼連接數據庫 Apr 13, 2025 pm 01:03 PM

Apache 連接數據庫需要以下步驟:安裝數據庫驅動程序。配置 web.xml 文件以創建連接池。創建 JDBC 數據源,指定連接設置。從 Java 代碼中使用 JDBC API 訪問數據庫,包括獲取連接、創建語句、綁定參數、執行查詢或更新以及處理結果。

MySQL的位置:數據庫和編程 MySQL的位置:數據庫和編程 Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

為什麼要使用mysql?利益和優勢 為什麼要使用mysql?利益和優勢 Apr 12, 2025 am 12:17 AM

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

MySQL的角色:Web應用程序中的數據庫 MySQL的角色:Web應用程序中的數據庫 Apr 17, 2025 am 12:23 AM

MySQL在Web應用中的主要作用是存儲和管理數據。 1.MySQL高效處理用戶信息、產品目錄和交易記錄等數據。 2.通過SQL查詢,開發者能從數據庫提取信息生成動態內容。 3.MySQL基於客戶端-服務器模型工作,確保查詢速度可接受。

docker怎麼啟動mysql docker怎麼啟動mysql Apr 15, 2025 pm 12:09 PM

在 Docker 中啟動 MySQL 的過程包含以下步驟:拉取 MySQL 鏡像創建並啟動容器,設置根用戶密碼並映射端口驗證連接創建數據庫和用戶授予對數據庫的所有權限

laravel入門實例 laravel入門實例 Apr 18, 2025 pm 12:45 PM

Laravel 是一款 PHP 框架,用於輕鬆構建 Web 應用程序。它提供一系列強大的功能,包括:安裝: 使用 Composer 全局安裝 Laravel CLI,並在項目目錄中創建應用程序。路由: 在 routes/web.php 中定義 URL 和處理函數之間的關係。視圖: 在 resources/views 中創建視圖以呈現應用程序的界面。數據庫集成: 提供與 MySQL 等數據庫的開箱即用集成,並使用遷移來創建和修改表。模型和控制器: 模型表示數據庫實體,控制器處理 HTTP 請求。

centos7如何安裝mysql centos7如何安裝mysql Apr 14, 2025 pm 08:30 PM

優雅安裝 MySQL 的關鍵在於添加 MySQL 官方倉庫。具體步驟如下:下載 MySQL 官方 GPG 密鑰,防止釣魚攻擊。添加 MySQL 倉庫文件:rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm更新 yum 倉庫緩存:yum update安裝 MySQL:yum install mysql-server啟動 MySQL 服務:systemctl start mysqld設置開機自啟動

See all articles