目錄
正確答案
首頁 後端開發 Python教學 計算多索引 pandas 資料幀外部索引每行的總和

計算多索引 pandas 資料幀外部索引每行的總和

Feb 05, 2024 pm 10:00 PM

计算多索引 pandas 数据帧外部索引每行的总和

問題內容

我有一個資料框:selleritempriceshipping免費送貨最低count availablecount required。我的目標是根據稍後計算的 total 找到 selleritem 的最便宜的組合(計算程式碼如下所示)。範例資料如下:

import pandas as pd

item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2']
seller1 = ['seller 1', 'seller 2', 'seller 3', 'seller 4', 'seller 1']
price1 = [1.85, 1.94, 2.00, 2.00, 2.02]
shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99]
freeship1 = [5, 5, 5, 50, 5]
countavailable1 = [1, 2, 2, 5, 2]
countneeded1 = [2, 1, 2, 2, 1]

df1 = pd.dataframe({'seller':seller1,
                    'item':item1,
                    'price':price1,
                    'shipping':shipping1,
                    'free shipping minimum':freeship1,
                    'count available':countavailable1,
                    'count needed':countneeded1})

# create columns that states if seller has all counts needed.
# this will be used to sort by to prioritize the smallest number of orders possible
for index, row in df1.iterrows():
    if row['count available'] >= row['count needed']:
        df1.at[index, 'fulfills count needed'] = 'yes'
    else:
        df1.at[index, 'fulfills count needed'] = 'no'

# dont want to calc price based on [count available], so need to check if seller has count i need and calc cost based on [count needed].
# if doesn't have [count needed], then calc cost on [count available].
for index, row in df1.iterrows():
    if row['count available'] >= row['count needed']:
        df1.at[index, 'price x count'] = row['count needed'] * row['price']
    else:
        df1.at[index, 'price x count'] = row['count available'] * row['price']
登入後複製

但是,任何一個seller都可以出售多個item。我想盡量減少支付的運費,所以我想透過 selleritems 分組在一起。因此,我根據我在另一個線程中看到的方式使用 .first() 方法對它們進行分組,以便將每一列保留在新的分組資料框中。

# don't calc [total] until sellers have been grouped
# use first() method to return all columns and perform no other aggregations
grouped1 = df1.sort_values('price').groupby(['seller', 'item']).first()
登入後複製

此時我想透過seller計算total。所以我有以下程式碼,但它為每個item 計算total,而不是seller,這意味著shipping 根據每個群組中的商品數量被多次添加,或當price x count 結束時不應用免費送貨最低免運費

# calc [Total]
for index, row in grouped1.iterrows():
    if (row['Free Shipping Minimum'] == 50) & (row['Price x Count'] > 50):
        grouped1.at[index, 'Total'] = row['Price x Count'] + 0
    elif (row['Free Shipping Minimum'] == 5) & (row['Price x Count'] > 5):
        grouped1.at[index, 'Total'] = row['Price x Count'] + 0
    else:
        grouped1.at[index, 'Total'] = row['Price x Count'] + row['Shipping']
登入後複製

實際上看起來我可能需要在計算total 時對每個seller 求和price x count ,但這本質上是同一個問題,因為我不知道如何計算外部索引的每行列。我可以使用什麼方法來做到這一點?

另外,如果有人對如何實現我的後半部目標有任何建議,請儘管提出。我只想退回我需要的每件商品。例如,我需要 2 個「項目 1」和 2 個「項目 2」。如果“賣家1”有2 個“商品1”和1 個“商品2”,而“賣家2”有1 個“商品1”和1 個“商品2”,那麼我想要“賣家1”的所有商品(假設它最便宜),但只有「賣家2」的1 個「商品1」。這似乎會影響 total 列的計算,但我不確定如何實現它。


正確答案


我最終決定先將seller 分組,並對price x count 進行求和以找到subtotals,將其轉換為資料幀,然後將df1 與新的subtotal 資料幀合併以建立groupedphpcnend cphpcn 資料框。然後我使用 <code>np.where 建議創建了 totals 列(這比我的 for 循環優雅得多,並且可以輕鬆處理 nan 值)。最後按sellertotalitem分組傳回我想要的結果。最終程式碼如下:

import pandas as pd
import numpy as np

item1 = ['item 1', 'item 2', 'item 1', 'item 1', 'item 2']
seller1 = ['Seller 1', 'Seller 2', 'Seller 3', 'Seller 4', 'Seller 1']
price1 = [1.85, 1.94, 2.69, 2.00, 2.02]
shipping1 = [0.99, 0.99, 0.99, 2.99, 0.99]
freeship1 = [5, 5, 5, 50, 5]
countavailable1 = [1, 2, 2, 5, 2]
countneeded1 = [2, 1, 2, 2, 1]

df1 = pd.DataFrame({'Seller':seller1,
                    'Item':item1,
                    'Price':price1,
                    'Shipping':shipping1,
                    'Free Shipping Minimum':freeship1,
                    'Count Available':countavailable1,
                    'Count Needed':countneeded1})

# create columns that states if seller has all counts needed.
# this will be used to sort by to prioritize the smallest number of orders possible
for index, row in df1.iterrows():
    if row['Count Available'] >= row['Count Needed']:
        df1.at[index, 'Fulfills Count Needed'] = 'Yes'
    else:
        df1.at[index, 'Fulfills Count Needed'] = 'No'

# dont want to calc price based on [count available], so need to check if seller has count I need and calc cost based on [count needed].
# if doesn't have [count needed], then calc cost on [count available].
for index, row in df1.iterrows():
    if row['Count Available'] >= row['Count Needed']:
        df1.at[index, 'Price x Count'] = row['Count Needed'] * row['Price']
    else:
        df1.at[index, 'Price x Count'] = row['Count Available'] * row['Price']

# subtotals by seller, then assign calcs to column called [Subtotal] and merge into dataframe
subtotals = df1.groupby(['Seller'])['Price x Count'].sum().reset_index()

subtotals.rename({'Price x Count':'Subtotal'}, axis=1, inplace=True)

grouped = df1.merge(subtotals[['Subtotal', 'Seller']], on='Seller')


# calc [Total]
grouped['Total'] = np.where(grouped['Subtotal'] > grouped['Free Shipping Minimum'],
                             grouped['Subtotal'], grouped['Subtotal'] + grouped['Shipping'])

grouped.groupby(['Seller', 'Total', 'Item']).first()
登入後複製

以上是計算多索引 pandas 資料幀外部索引每行的總和的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1318
25
PHP教程
1268
29
C# 教程
1248
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

See all articles