目錄
正確答案
首頁 後端開發 Golang 我的神經網路(從頭開始)訓練,讓它離目標更遠

我的神經網路(從頭開始)訓練,讓它離目標更遠

Feb 06, 2024 am 10:36 AM

我的神經網路(從頭開始)訓練,讓它離目標更遠

問題內容

這是我第一次創建神經網絡,我決定在golang 中創建它,這通常不是用於此目的的語言,但是我想從頭開始很好地理解它們如何工作僅基本庫。

該程式的目標是訓練一個神經網絡,使其能夠將兩個數字(1-10)相加。為此,我創建了一個名為rawai(我能想到的最好的名字)的神經網路類,並給它一個1 個輸入層(大小為2 的數組)、1 個隱藏層(大小為2 的數組)和1 個輸出層(大小為1) 的陣列。

權重有2個2d數組,一個是ih(hidden的輸入)[2,2],一個是ho,[2,1]。

以下是啟動 ai、訓練和測試 ai 的程式碼。您將看到我使用過的幾個偵錯語句,並且非 golang 或其套件的任何其他函數將顯示在我的 rawai 類別的以下程式碼中。這是由我的 main 函數呼叫的:

func additionneuralnetworktest() {
    nn := newrawai(2, 2, 1, 1/math.pow(10, 15))
    fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho)
    //train neural network
    //
    for epoch := 0; epoch < 10000000; epoch++ {
        for i := 0; i <= 10; i++ {
            for j := 0; j <= 10; j++ {
                inputs := make([]float64, 2)
                targets := make([]float64, 1)
                inputs[0] = float64(i)
                inputs[1] = float64(j)
                targets[0] = float64(i) + float64(j)
                nn.train(inputs, targets)
                if epoch%20000 == 0 && i == 5 && j == 5 {
                    fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0])
                }

            }

        }
    }
    // test neural network
    a := rand.intn(10) + 1
    b := rand.intn(10) + 1
    inputs := make([]float64, 2)
    inputs[0] = float64(a)
    inputs[1] = float64(b)
    prediction := nn.feedforward(inputs)[0]
    fmt.printf("%d + %d = %f\n", a, b, prediction)
    fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho)

}
登入後複製

以下是 rawai 檔案中的所有程式碼:

type RawAI struct {
    InputLayer   []float64   `json:"input_layer"`
    HiddenLayer  []float64   `json:"hidden_layer"`
    OutputLayer  []float64   `json:"output_layer"`
    WeightsIH    [][]float64 `json:"weights_ih"`
    WeightsHO    [][]float64 `json:"weights_ho"`
    LearningRate float64     `json:"learning_rate"`
}

func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI {
    nn := RawAI{
        InputLayer:   make([]float64, inputSize),
        HiddenLayer:  make([]float64, hiddenSize),
        OutputLayer:  make([]float64, outputSize),
        WeightsIH:    randomMatrix(inputSize, hiddenSize),
        WeightsHO:    randomMatrix(hiddenSize, outputSize),
        LearningRate: learningRate,
    }
    return &nn
}
func (nn *RawAI) FeedForward(inputs []float64) []float64 {
    // Set input layer
    for i := 0; i < len(inputs); i++ {
        nn.InputLayer[i] = inputs[i]
    }

    // Compute hidden layer
    for i := 0; i < len(nn.HiddenLayer); i++ {
        sum := 0.0
        for j := 0; j < len(nn.InputLayer); j++ {
            sum += nn.InputLayer[j] * nn.WeightsIH[j][i]
        }
        nn.HiddenLayer[i] = sum
        if math.IsNaN(sum) {
            panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH))
        }

    }

    // Compute output layer
    for k := 0; k < len(nn.OutputLayer); k++ {
        sum := 0.0
        for j := 0; j < len(nn.HiddenLayer); j++ {
            sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k]
        }
        nn.OutputLayer[k] = sum
        if math.IsNaN(sum) {
            panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn))
        }

    }

    return nn.OutputLayer
}
func (nn *RawAI) Train(inputs []float64, targets []float64) {
    nn.FeedForward(inputs)

    // Compute output layer error
    outputErrors := make([]float64, len(targets))
    for k := 0; k < len(targets); k++ {
        outputErrors[k] = targets[k] - nn.OutputLayer[k]
    }

    // Compute hidden layer error
    hiddenErrors := make([]float64, len(nn.HiddenLayer))
    for j := 0; j < len(nn.HiddenLayer); j++ {
        errorSum := 0.0
        for k := 0; k < len(nn.OutputLayer); k++ {
            errorSum += outputErrors[k] * nn.WeightsHO[j][k]
        }
        hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j])
        if math.IsInf(math.Abs(hiddenErrors[j]), 1) {
            //Find out why
            fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer)
        }
    }

    // Update weights
    for j := 0; j < len(nn.HiddenLayer); j++ {
        for k := 0; k < len(nn.OutputLayer); k++ {
            delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j]
            nn.WeightsHO[j][k] += delta
        }
    }
    for i := 0; i < len(nn.InputLayer); i++ {
        for j := 0; j < len(nn.HiddenLayer); j++ {
            delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i]
            nn.WeightsIH[i][j] += delta
            if math.IsNaN(delta) {
                fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
            }
            if math.IsNaN(nn.WeightsIH[i][j]) {
                fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
            }
        }
    }

}
func (nn *RawAI) ExportWeights(filename string) error {
    weightsJson, err := json.Marshal(nn)
    if err != nil {
        return err
    }
    err = ioutil.WriteFile(filename, weightsJson, 0644)
    if err != nil {
        return err
    }
    return nil
}
func (nn *RawAI) ImportWeights(filename string) error {
    weightsJson, err := ioutil.ReadFile(filename)
    if err != nil {
        return err
    }
    err = json.Unmarshal(weightsJson, nn)
    if err != nil {
        return err
    }
    return nil
}

//RawAI Tools:
func randomMatrix(rows, cols int) [][]float64 {
    matrix := make([][]float64, rows)
    for i := 0; i < rows; i++ {
        matrix[i] = make([]float64, cols)
        for j := 0; j < cols; j++ {
            matrix[i][j] = 1.0
        }
    }
    return matrix
}
func sigmoid(x float64) float64 {
    return 1.0 / (1.0 + exp(-x))
}
func sigmoidDerivative(x float64) float64 {
    return x * (1.0 - x)
}

func exp(x float64) float64 {
    return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0
}
登入後複製

輸出的例子是這樣的: 正如您所看到的,它慢慢地遠離目標並繼續這樣做。 經過詢問、谷歌搜尋和搜尋這個網站後,我找不到我的錯誤所在,所以我決定問這個問題。


正確答案


我認為您使用的是 均方誤差 並在微分後忘記了 -

所以改變:

outputerrors[k] =  (targets[k] - nn.outputlayer[k])
登入後複製

致:

outputErrors[k] = -(targets[k] - nn.OutputLayer[k])
登入後複製

以上是我的神經網路(從頭開始)訓練,讓它離目標更遠的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Debian OpenSSL有哪些漏洞 Debian OpenSSL有哪些漏洞 Apr 02, 2025 am 07:30 AM

OpenSSL,作為廣泛應用於安全通信的開源庫,提供了加密算法、密鑰和證書管理等功能。然而,其歷史版本中存在一些已知安全漏洞,其中一些危害極大。本文將重點介紹Debian系統中OpenSSL的常見漏洞及應對措施。 DebianOpenSSL已知漏洞:OpenSSL曾出現過多個嚴重漏洞,例如:心臟出血漏洞(CVE-2014-0160):該漏洞影響OpenSSL1.0.1至1.0.1f以及1.0.2至1.0.2beta版本。攻擊者可利用此漏洞未經授權讀取服務器上的敏感信息,包括加密密鑰等。

從前端轉型後端開發,學習Java還是Golang更有前景? 從前端轉型後端開發,學習Java還是Golang更有前景? Apr 02, 2025 am 09:12 AM

後端學習路徑:從前端轉型到後端的探索之旅作為一名從前端開發轉型的後端初學者,你已經有了nodejs的基礎,...

Beego ORM中如何指定模型關聯的數據庫? Beego ORM中如何指定模型關聯的數據庫? Apr 02, 2025 pm 03:54 PM

在BeegoORM框架下,如何指定模型關聯的數據庫?許多Beego項目需要同時操作多個數據庫。當使用Beego...

GoLand中自定義結構體標籤不顯示怎麼辦? GoLand中自定義結構體標籤不顯示怎麼辦? Apr 02, 2025 pm 05:09 PM

GoLand中自定義結構體標籤不顯示怎麼辦?在使用GoLand進行Go語言開發時,很多開發者會遇到自定義結構體標籤在�...

Go語言中用於浮點數運算的庫有哪些? Go語言中用於浮點數運算的庫有哪些? Apr 02, 2025 pm 02:06 PM

Go語言中用於浮點數運算的庫介紹在Go語言(也稱為Golang)中,進行浮點數的加減乘除運算時,如何確保精度是�...

Go的爬蟲Colly中Queue線程的問題是什麼? Go的爬蟲Colly中Queue線程的問題是什麼? Apr 02, 2025 pm 02:09 PM

Go爬蟲Colly中的Queue線程問題探討在使用Go語言的Colly爬蟲庫時,開發者常常會遇到關於線程和請求隊列的問題。 �...

在Go語言中使用Redis Stream實現消息隊列時,如何解決user_id類型轉換問題? 在Go語言中使用Redis Stream實現消息隊列時,如何解決user_id類型轉換問題? Apr 02, 2025 pm 04:54 PM

Go語言中使用RedisStream實現消息隊列時類型轉換問題在使用Go語言與Redis...

如何在Debian上配置MongoDB自動擴容 如何在Debian上配置MongoDB自動擴容 Apr 02, 2025 am 07:36 AM

本文介紹如何在Debian系統上配置MongoDB實現自動擴容,主要步驟包括MongoDB副本集的設置和磁盤空間監控。一、MongoDB安裝首先,確保已在Debian系統上安裝MongoDB。使用以下命令安裝:sudoaptupdatesudoaptinstall-ymongodb-org二、配置MongoDB副本集MongoDB副本集確保高可用性和數據冗餘,是實現自動擴容的基礎。啟動MongoDB服務:sudosystemctlstartmongodsudosys

See all articles