首頁 資料庫 mysql教程 mysql实现本地keyvalue数据库缓存示例_MySQL

mysql实现本地keyvalue数据库缓存示例_MySQL

Jun 01, 2016 pm 01:25 PM
mysql 資料庫

bitsCN.com

Key-Value缓存有很多,用的较多的是memcache、redis,他们都是以独立服务的形式运行,在工作中有时需要嵌入一个本地的key-value缓存,当然已经有LevelDb等,但感觉还是太重量级了。

本文实现了一种超级轻量的缓存,

1、实现代码仅仅需要400行;

2、性能高效,value长度在1K时测试速度在每秒200万左右

3、缓存是映射到文件中的,所以没有malloc、free的开销,以及带来的内存泄露、内存碎片等;

4、如果服务挂掉了,重启后缓存内容继续存在;

5、如果把缓存映射到磁盘文件就算机器挂了,缓存中内容还是会存在,当然有可能会出现数据损坏的情况;

6、一定程度上实现了LRU淘汰算法,实现的LRU不是全局的只是一条链上的,所以只能说在一定程序上实现了;

7、稳定,已经在多个项目中运用,线上部署的机器有几十台,运行了大半年了没出过问题;

8、普通的缓存key、value都是字符串的形式,此缓存的key、value都可以是class、struct对象结构使用更方便;

 老规矩直接上代码:

 
 template
class HashTable
{
public:
    HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal);
    virtual ~HashTable();

    bool Add(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        //check is exist
        uint32_t nodeId = GetIdByKey(key);
        if(nodeId != m_InvalidId) return false;

        nodeId = GetFreeNode();
        if(nodeId == m_InvalidId) return false;

        uint32_t hashCode = key.HashCode();
        Entry *tmpNode = m_EntryAddr + nodeId;
        tmpNode->m_Key = key;
        tmpNode->m_Code = hashCode;
        tmpNode->m_Value = value;

        uint32_t index = hashCode % m_HeadAddr->m_TableLen;
        AddNodeToHead(index, nodeId);

        return true;
    }

    bool Del(K &key)
    {
        AutoLock autoLock(m_MutexLock);

        uint32_t nodeId = GetIdByKey(key);
        if(nodeId == m_InvalidId) return false;

        uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;

        return RecycleNode(index, nodeId);
    }

    bool Set(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        uint32_t nodeId = GetIdByKey(key);
        if(nodeId == m_InvalidId) return false;

        (m_EntryAddr + nodeId)->m_Value = value;

        return true;
    }

    bool Get(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        uint32_t nodeId = GetIdByKey(key);
        if(nodeId == m_InvalidId) return false;

        value = (m_EntryAddr + nodeId)->m_Value;

        return true;
    }

    bool Exist(K &key)
    {
        AutoLock autoLock(m_MutexLock);

        uint32_t nodeId = GetIdByKey(key);
        if(nodeId == m_InvalidId) return false;

        return true;
    }

    uint32_t Count()
    {
        AutoLock autoLock(m_MutexLock);
        return m_HeadAddr->m_UsedCount;
    }

    //if exist set else add
    bool Replace(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        if(Exist(key)) return Set(key, value);
        else return Add(key, value);
    }

    /***********************************************
    ****LRU: when visit a node, move it to head ****
    ************************************************/
    //if no empty place,recycle tail
    bool LruAdd(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
    {
        AutoLock autoLock(m_MutexLock);

        if(Exist(key)) return false;

        if(Add(key, value)) return true;

        uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;
        uint32_t tailId = GetTailNodeId(index);

        if(tailId == m_InvalidId) return false;

        Entry *tmpNode = m_EntryAddr + tailId;
        recyKey   = tmpNode->m_Key;
        recyValue = tmpNode->m_Value;
        recycled  = true;

        RecycleNode(index, tailId);

        return Add(key, value);
    }

    bool LruSet(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        if(Set(key, value)) return MoveToHead(key);
        else return false;
    }

    bool LruGet(K &key, V &value)
    {
        AutoLock autoLock(m_MutexLock);

        if(Get(key, value)) return MoveToHead(key);
        else return false;
    }

    //if exist set else add; if add failed recycle tail than add
    bool LruReplace(K &key, V &value, K &recyKey, V &recyValue, bool &recycled)
    {
        AutoLock autoLock(m_MutexLock);

        recycled = false;

        if(Exist(key)) return LruSet(key, value);
        else return LruAdd(key, value, recyKey, recyValue, recycled);
    }

    void Clear()
    {
        AutoLock autoLock(m_MutexLock);

        m_HeadAddr->m_FreeBase = 0;
        m_HeadAddr->m_RecycleHead = 0;
        m_HeadAddr->m_UsedCount = 0;
        for(uint32_t i = 0; i m_TableLen; ++i)
        {
            (m_ArrayAddr+i)->m_Head = m_InvalidId;
            (m_ArrayAddr+i)->m_Tail = m_InvalidId;
        }
    }

    int GetRowKeys(vector &keys, uint32_t index)
    {
        AutoLock autoLock(m_MutexLock);

        if(index >= m_HeadAddr->m_TableLen) return -1;

        keys.clear();
        keys.reserve(16);

        int count = 0;
        Array *tmpArray = m_ArrayAddr + index;
        uint32_t nodeId = tmpArray->m_Head;
        while(nodeId != m_InvalidId)
        {
            Entry *tmpNode = m_EntryAddr + nodeId;
            keys.push_back(tmpNode->m_Key);
            nodeId = tmpNode->m_Next;
            ++count;
        }

        return count;
    }

    void *Padding(uint32_t size)
    {
        AutoLock autoLock(m_MutexLock);

        if(size > m_HeadSize - sizeof(TableHead)) return NULL;
        else return m_HeadAddr->m_Padding;
    }

private:
    static const uint32_t m_InvalidId = 0xffffffff;
    static const uint32_t m_HeadSize = 1024;
    struct TableHead
    {
        uint32_t m_TableLen;
        uint32_t m_NodeTotal;
        uint32_t m_FreeBase;
        uint32_t m_RecycleHead;
        uint32_t m_UsedCount;
        char     m_TableName[256];
        uint32_t m_Padding[0];
    };

    struct Array
    {
        uint32_t m_Head;
        uint32_t m_Tail;
    };

    struct Entry
    {
        V m_Value;
        K m_Key;
        uint32_t m_Code;
        uint32_t m_Next;
        uint32_t m_Prev;
    };

    size_t     m_MemSize;
    uint8_t   *m_MemAddr;
    TableHead *m_HeadAddr;
    Array     *m_ArrayAddr;
    Entry     *m_EntryAddr;

    ThreadMutex m_MutexLock;

    bool MoveToHead(K &key);
    uint32_t GetIdByKey(K &key);
    void AddNodeToHead(uint32_t index, uint32_t nodeId);
    bool MoveNodeToHead(uint32_t index, uint32_t nodeId);
    bool RecycleNode(uint32_t index, uint32_t nodeId);
    uint32_t GetTailNodeId(uint32_t index);
    uint32_t GetFreeNode();

    DISABLE_COPY_AND_ASSIGN(HashTable);
};

template
HashTable::HashTable(const char *tablename, uint32_t tableLen, uint32_t nodeTotal)
{
    AbortAssert(tablename != NULL);

    m_MemSize = m_HeadSize + tableLen*sizeof(Array) + nodeTotal*sizeof(Entry);
    m_MemAddr = (uint8_t*)MemFile::Realloc(tablename, m_MemSize);
    AbortAssert(m_MemAddr != NULL);

    m_HeadAddr = (TableHead*)(m_MemAddr);
    m_ArrayAddr = (Array*)(m_MemAddr + m_HeadSize);
    m_EntryAddr = (Entry*)(m_MemAddr + m_HeadSize + tableLen*sizeof(Array));

    m_HeadAddr->m_TableLen = tableLen;
    m_HeadAddr->m_NodeTotal = nodeTotal;
    strncpy(m_HeadAddr->m_TableName, tablename, sizeof(m_HeadAddr->m_TableName));

    if(m_HeadAddr->m_UsedCount == 0)//if first use init array to invalid id
    {
        for(uint32_t i = 0; i         {
            (m_ArrayAddr+i)->m_Head = m_InvalidId;
            (m_ArrayAddr+i)->m_Tail = m_InvalidId;
        }

        m_HeadAddr->m_FreeBase = 0;
        m_HeadAddr->m_RecycleHead = 0;
    }
}

template
HashTable::~HashTable()
{
    MemFile::Release(m_MemAddr, m_MemSize);
}

template
bool HashTable::MoveToHead(K &key)
{
    uint32_t nodeId = GetIdByKey(key);
    uint32_t index = key.HashCode() % m_HeadAddr->m_TableLen;

    return MoveNodeToHead(index, nodeId);
}

template
uint32_t HashTable::GetIdByKey(K &key)
{
    uint32_t hashCode = key.HashCode();
    uint32_t index = hashCode % m_HeadAddr->m_TableLen;
    Array *tmpArray = m_ArrayAddr + index;

    uint32_t nodeId = tmpArray->m_Head;
    while(nodeId != m_InvalidId)
    {
        Entry *tmpNode = m_EntryAddr + nodeId;
        if(tmpNode->m_Code == hashCode && key.Equals(tmpNode->m_Key)) break;

        nodeId = tmpNode->m_Next;
    }

    return nodeId;
}

template
void HashTable::AddNodeToHead(uint32_t index, uint32_t nodeId)
{
    if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return;

    Array *tmpArray = m_ArrayAddr + index;
    Entry *tmpNode = m_EntryAddr + nodeId;
    if(m_InvalidId == tmpArray->m_Head)
    {
        tmpArray->m_Head = nodeId;
        tmpArray->m_Tail = nodeId;
    }
    else
    {
        tmpNode->m_Next = tmpArray->m_Head;
        (m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
        tmpArray->m_Head = nodeId;
    }
}

template
bool HashTable::MoveNodeToHead(uint32_t index, uint32_t nodeId)
{
    if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;

    Array *tmpArray = m_ArrayAddr + index;
    Entry *tmpNode = m_EntryAddr + nodeId;

    //already head
    if(tmpArray->m_Head == nodeId)
    {
        return true;
    }

    uint32_t nodePrev = tmpNode->m_Prev;
    uint32_t nodeNext = tmpNode->m_Next;
    (m_EntryAddr+nodePrev)->m_Next = nodeNext;
    if(nodeNext != m_InvalidId)
    {
        (m_EntryAddr+nodeNext)->m_Prev = nodePrev;
    }
    else
    {
        tmpArray->m_Tail = nodePrev;
    }

    tmpNode->m_Prev = m_InvalidId;
    tmpNode->m_Next = tmpArray->m_Head;
    (m_EntryAddr + tmpArray->m_Head)->m_Prev = nodeId;
    tmpArray->m_Head = nodeId;

    return true;
}

template
bool HashTable::RecycleNode(uint32_t index, uint32_t nodeId)
{
    if(index >= m_HeadAddr->m_TableLen || nodeId >= m_HeadAddr->m_NodeTotal) return false;

    Array *tmpArray = m_ArrayAddr + index;
    Entry *tmpNode = m_EntryAddr + nodeId;

    uint32_t nodePrev = tmpNode->m_Prev;
    uint32_t nodeNext = tmpNode->m_Next;

    if(nodePrev != m_InvalidId)
    {
        (m_EntryAddr + nodePrev)->m_Next = nodeNext;
    }
    else
    {
        tmpArray->m_Head = nodeNext;
    }

    if(nodeNext != m_InvalidId)
    {
        (m_EntryAddr + nodeNext)->m_Prev = nodePrev;
    }
    else
    {
        tmpArray->m_Tail = nodePrev;
    }

    (m_EntryAddr+nodeId)->m_Next = m_HeadAddr->m_RecycleHead;
    m_HeadAddr->m_RecycleHead = nodeId;
    --(m_HeadAddr->m_UsedCount);

    return true;
}

template
uint32_t HashTable::GetTailNodeId(uint32_t index)
{
    if(index >= m_HeadAddr->m_TableLen) return m_InvalidId;

    Array *tmpArray = m_ArrayAddr + index;

    return tmpArray->m_Tail;
}

template
uint32_t HashTable::GetFreeNode()
{
    uint32_t nodeId = m_InvalidId;
    if(m_HeadAddr->m_UsedCount m_FreeBase)//get from recycle list
    {
        nodeId = m_HeadAddr->m_RecycleHead;
        m_HeadAddr->m_RecycleHead = (m_EntryAddr+nodeId)->m_Next;
        ++(m_HeadAddr->m_UsedCount);
    }
    else if(m_HeadAddr->m_UsedCount m_NodeTotal)//get from free mem
    {
        nodeId = m_HeadAddr->m_FreeBase;
        ++(m_HeadAddr->m_FreeBase);
        ++(m_HeadAddr->m_UsedCount);
    }
    else
    {
        nodeId = m_InvalidId;
    }

    //init node
    if(nodeId m_NodeTotal)
    {
        Entry *tmpNode = m_EntryAddr + nodeId;
        memset(tmpNode, 0, sizeof(Entry));

        tmpNode->m_Next = m_InvalidId;
        tmpNode->m_Prev = m_InvalidId;
    }

    return nodeId;
}
 

bitsCN.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
MySQL和PhpMyAdmin:核心功能和功能 MySQL和PhpMyAdmin:核心功能和功能 Apr 22, 2025 am 12:12 AM

MySQL和phpMyAdmin是強大的數據庫管理工具。 1)MySQL用於創建數據庫和表、執行DML和SQL查詢。 2)phpMyAdmin提供直觀界面進行數據庫管理、表結構管理、數據操作和用戶權限管理。

甲骨文在商業世界中的作用 甲骨文在商業世界中的作用 Apr 23, 2025 am 12:01 AM

Oracle不僅是數據庫公司,還是雲計算和ERP系統的領導者。 1.Oracle提供從數據庫到雲服務和ERP系統的全面解決方案。 2.OracleCloud挑戰AWS和Azure,提供IaaS、PaaS和SaaS服務。 3.Oracle的ERP系統如E-BusinessSuite和FusionApplications幫助企業優化運營。

在MySQL中解釋外鍵的目的。 在MySQL中解釋外鍵的目的。 Apr 25, 2025 am 12:17 AM

在MySQL中,外鍵的作用是建立表與表之間的關係,確保數據的一致性和完整性。外鍵通過引用完整性檢查和級聯操作維護數據的有效性,使用時需注意性能優化和避免常見錯誤。

比較和對比Mysql和Mariadb。 比較和對比Mysql和Mariadb。 Apr 26, 2025 am 12:08 AM

MySQL和MariaDB的主要區別在於性能、功能和許可證:1.MySQL由Oracle開發,MariaDB是其分支。 2.MariaDB在高負載環境中性能可能更好。 3.MariaDB提供了更多的存儲引擎和功能。 4.MySQL採用雙重許可證,MariaDB完全開源。選擇時應考慮現有基礎設施、性能需求、功能需求和許可證成本。

SQL與MySQL:澄清兩者之間的關係 SQL與MySQL:澄清兩者之間的關係 Apr 24, 2025 am 12:02 AM

SQL是一種用於管理關係數據庫的標準語言,而MySQL是一個使用SQL的數據庫管理系統。 SQL定義了與數據庫交互的方式,包括CRUD操作,而MySQL實現了SQL標準並提供了額外的功能,如存儲過程和触發器。

REDIS:了解其架構和目的 REDIS:了解其架構和目的 Apr 26, 2025 am 12:11 AM

Redis是一种内存数据结构存储系统,主要用作数据库、缓存和消息代理。它的核心特点包括单线程模型、I/O多路复用、持久化机制、复制与集群功能。Redis在实际应用中常用于缓存、会话存储和消息队列,通过选择合适的数据结构、使用管道和事务、以及进行监控和调优,可以显著提升其性能。

如何安全地將包含函數和正則表達式的JavaScript對象存儲到數據庫並恢復? 如何安全地將包含函數和正則表達式的JavaScript對象存儲到數據庫並恢復? Apr 19, 2025 pm 11:09 PM

安全地處理JSON中的函數和正則表達式在前端開發中,經常需要將JavaScript...

MySQL:數據庫,PHPMYADMIN:管理接口 MySQL:數據庫,PHPMYADMIN:管理接口 Apr 29, 2025 am 12:44 AM

MySQL和phpMyAdmin可以通過以下步驟進行有效管理:1.創建和刪除數據庫:在phpMyAdmin中點擊幾下即可完成。 2.管理表:可以創建表、修改結構、添加索引。 3.數據操作:支持插入、更新、刪除數據和執行SQL查詢。 4.導入導出數據:支持SQL、CSV、XML等格式。 5.優化和監控:使用OPTIMIZETABLE命令優化表,並利用查詢分析器和監控工具解決性能問題。

See all articles