Linux C下線程池的使用
你是否經常遇到伺服器負載過高,無法正常存取的問題?那麼,你需要了解 Linux 系統中一個非常重要的概念—線程池。透過合理配置線程池,可以有效避免伺服器過載的問題,並提高系統的穩定性和可靠性。
執行緒池也是多執行緒的處理方式。是將“生產者”執行緒提出任務新增至“任務佇列”,然後一些執行緒自動完成“任務佇列”上的任務。

多線程編程,建立一個線程,指定去完成某一個任務,等待線程的退出。雖然能夠滿足程式需求,但是當我們需要創建大量的執行緒的時候,在創建過程以及銷毀執行緒的過程中可能會消耗大量的CPU.增加很大開銷。如:資料夾的copy、WEB伺服器的回應。
線程池就是用來解決類似於這樣的一個問題的,可以降低頻繁地創建和銷毀線程所帶來地開銷。
執行緒池技術想法:一般採用預先建立執行緒技術,也就是提前把需要用執行緒先建立一定數目。這些線程提前創建好了之後,「任務佇列」裡面假設沒有任務,那麼就讓這些線程休眠,一旦有任務,就喚醒線程去執行任務,任務執行完了,也不需要去銷毀線程,直到當你想退出或是關機時,這個時候,那麼你呼叫銷毀執行緒池地函數去銷毀執行緒。
執行緒完成任務之後不會銷毀,而是自動地執行下一個任務。而且,當任務很多,你可以有函數介面去增加執行緒數量,當任務較少時,你可以有函數介面去銷毀部分執行緒。
如果,創建和銷毀執行緒的時間比較執行任務的時間可以忽略不計,那麼我們在這種情況下面也就沒有必要用執行緒池。
「任務佇列」是一個共享資源「互斥存取」

執行緒池本質上也是一個資料結構,需要一個結構體去描述它:
struct pthread_pool //线程池的实现 { //一般会有如下成员 //互斥锁,用来保护这个“任务队列” pthread_mutex_t lock; //互斥锁 //线程条件变量 表示“任务队列”是否有任务 pthread_cond_t cond; //条件变量 bool shutdown; //表示是否退出程序 bool:类型 false / true //任务队列(链表),指向第一个需要指向的任务 //所有的线程都从任务链表中获取任务 "共享资源" struct task * task_list; //线程池中有多个线程,每一个线程都有tid, 需要一个数组去保存tid pthread_t * tids; //malloc() //线程池中正在服役的线程数,当前线程个数 unsigned int active_threads; //线程池任务队列最大的任务数量 unsigned int max_waiting_tasks; //线程池任务队列上当前有多少个任务 unsigned int cur_waiting_tasks; //...... }; //任务队列(链表)上面的任务结点,只要能够描述好一个任务就可以了, //线程会不断地任务队列取任务 struct task //任务结点 { // 1. 任务结点表示的任务,“函数指针”指向任务要执行的函数(cp_file) void*(* do_task)(void * arg); //2. 指针,指向任务指向函数的参数(文件描述符) void * arg; //3. 任务结点类型的指针,指向下一个任务 struct task * next; };
執行緒池框架程式碼如下,功能自填:
操作執行緒池所需的函數介面:pthread_pool.c 、pthread_pool.h
把「執行緒池」想像成一個外包公司,你需要去完成的就是操作執行緒池所提供的函數介面。
pthread_pool.c
#include "pthread_pool.h" /* init_pool: 线程池初始化函数,初始化指定的线程池中有thread_num个初始线程 @pool:指针,指向您要初始化的那个线程池 @threa_num: 您要初始化的线程池中开始的线程数量 返回值: 成功 0 失败 -1 */ int init_pool(pthread_pool * pool , unsigned int threa_num) { //初始化线程池的结构体 //初始化线程互斥锁 pthread_mutex_init(&pool->lock, NULL); //初始化线程条件变量 pthread_cond_init(&pool->cond, NULL); pool->shutdown = false ;// 不退出 pool->task_list = (struct task*)malloc(sizeof(struct task)); pool->tids = (pthread_t *)malloc(sizeof(pthread_t) * MAX_ACTIVE_THREADS); if(pool->task_list == NULL || pool->tids == NULL) { perror("malloc memery error"); return -1; } pool->task_list->next = NULL; //线程池中一开始初始化多少个线程来服役 pool->active_threads = threa_num; //表示线程池中最多有多少个任务 pool->max_waiting_tasks = MAX_WAITING_TASKS; //线程池中任务队列当前的任务数量 pool->cur_waiting_tasks = 0; //创建thread_num个线程,并且让线程去执行任务调配函数, //记录所有线程的tid int i = 0; for(i = 0; i tids)[i], NULL, routine, (void*)pool); if(ret != 0) { perror("create thread error"); return -1; } printf("[%lu]:[%s] ===> tids[%d]:[%lu]",pthread_self(), __FUNCTION__, i , pool->tids[i]); } return 0; } /* routine: 任务调配函数。 所有线程开始都执行此函数,此函数会不断的从线程池的任务队列 中取下任务结点,去执行。 任务结点中包含“函数指针” h "函数参数" */ void * routine(void * arg) { //arg表示你的线程池的指针 while() { //获取线程互斥锁,lock //当线程池没有结束的时候,不断地从线程池的任务队列取下结点 //去执行。 //释放线程互斥锁,unlock //释放任务结点 } } /* destroy_pool: 销毁线程池,销毁前要保证所有的任务已经完成 */ int destroy_pool(pthread_pool * pool) { //释放所有空间 等待任务执行完毕(join)。 //唤醒所有线程 //利用join函数回收每一个线程资源。 } /* add_task:给任务队列增加任务, 把do_task指向的任务(函数指针)和 arg指向的参数保存到一个任务结点,添加到pool任务队列中。 @pool : 您要添加任务的线程池 @do_task : 您需要添加的任务(cp_file) @arg: 您要执行的任务的参数(文件描述符) */ int add_task(pthread_pool *pool,void*(* do_task)(void * arg), void*arg) { //把第二个参数和第三个参数封装成struct task //再把它添加到 pool->task 任务队列中去 //注意任务队列是一个共享资源 //假如任务后要唤醒等待的线程。 } //如果任务多的时候,往线程池中添加线程 pthread_create int add_threads(pthread_pool * pool, unsigned int num); { //新创建num个线程,让每一个线程去执行线程调配函数 //将每一个新创建的线程tid,添加到pool-> tids } //如果任务少的时候,减少线程池中线程的数量 pthread_cancel join int remove_threads(pthread_pool * pool, unsigned int num) { //用pthread_cancel取消num个线程 //利用pthread_join函数去回收资源。 }
pthread_pool.h
#ifndef __PTHREAD_POOL_H__ #define __PTHREAD_POOL_H__ //表示线程池中最多有多少个线程 #define MAX_ACTIVE_THREADS 20 //表示线程池中最多有多少个任务 #define MAX_WAITING_TASKS 1024 //任务队列(链表)上面的任务结点,只要能够描述好一个任务就可以了, //线程会不断地任务队列取任务 struct task //任务结点 { // 1. 任务结点表示的任务,“函数指针”指向任务要执行的函数(cp_file) void*(* do_task)(void * arg); //2. 指针,指向任务指向函数的参数(文件描述符) void * arg; //3. 任务结点类型的指针,指向下一个任务 struct task * next; }; struct pthread_pool //线程池的实现 { //一般会有如下成员 //互斥锁,用来保护这个“任务队列” pthread_mutex_t lock; //互斥锁 //线程条件变量 表示“任务队列”是否有任务 pthread_cond_t cond; //条件变量 bool shutdown; //表示是否退出程序 bool:类型 false / true //任务队列(链表),指向第一个需要指向的任务 //所有的线程都从任务链表中获取任务 "共享资源" struct task * task_list; //线程池中有多个线程,每一个线程都有tid, 需要一个数组去保存tid pthread_t * tids; //malloc() //线程池中正在服役的线程数,当前线程个数 unsigned int active_threads; //线程池任务队列最大的任务数量 unsigned int max_waiting_tasks; //线程池任务队列上当前有多少个任务 unsigned int cur_waiting_tasks; //...... }; /* init_pool: 线程池初始化函数,初始化指定的线程池中有thread_num 个初始线程 @pool:指针,指向您要初始化的那个线程池 @threa_num: 您要初始化的线程池中开始的线程数量 返回值: 成功 0 失败 -1 */ int init_pool(pthread_pool * pool , unsigned int threa_num); /* routine: 任务调配函数。 所有线程开始都执行此函数,此函数会不断的从线程池的任务队列 中取下任务结点,去执行。 任务结点中包含“函数指针” h "函数参数" */ void * routine(void * arg); /* destroy_pool: 销毁线程池,销毁前要保证所有的任务已经完成 */ int destroy_pool(pthread_pool * pool); /* add_task:给任务队列增加任务, 把do_task指向的任务(函数指针)和 arg指向的参数保存到一个任务结点,添加到pool任务队列中。 @pool : 您要添加任务的线程池 @do_task : 您需要添加的任务(cp_file) @arg: 您要执行的任务的参数(文件描述符) */ int add_task(pthread_pool *pool,void*(* do_task)(void * arg), void*arg); //如果任务多的时候,往线程池中添加线程 pthread_create int add_threads(pthread_pool * pool, unsigned int num); //如果任务少的时候,减少线程池中线程的数量 pthread_cancel join int remove_threads(pthread_pool * pool, unsigned int num); #endif
以上是Linux C下線程池的使用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

CentOS 和 Ubuntu 的關鍵差異在於:起源(CentOS 源自 Red Hat,面向企業;Ubuntu 源自 Debian,面向個人)、包管理(CentOS 使用 yum,注重穩定;Ubuntu 使用 apt,更新頻率高)、支持週期(CentOS 提供 10 年支持,Ubuntu 提供 5 年 LTS 支持)、社區支持(CentOS 側重穩定,Ubuntu 提供廣泛教程和文檔)、用途(CentOS 偏向服務器,Ubuntu 適用於服務器和桌面),其他差異包括安裝精簡度(CentOS 精

CentOS 安裝步驟:下載 ISO 映像並刻錄可引導媒體;啟動並選擇安裝源;選擇語言和鍵盤佈局;配置網絡;分區硬盤;設置系統時鐘;創建 root 用戶;選擇軟件包;開始安裝;安裝完成後重啟並從硬盤啟動。

CentOS 已停止維護,替代選擇包括:1. Rocky Linux(兼容性最佳);2. AlmaLinux(與 CentOS 兼容);3. Ubuntu Server(需要配置);4. Red Hat Enterprise Linux(商業版,付費許可);5. Oracle Linux(與 CentOS 和 RHEL 兼容)。在遷移時,考慮因素有:兼容性、可用性、支持、成本和社區支持。

如何使用 Docker Desktop? Docker Desktop 是一款工具,用於在本地機器上運行 Docker 容器。其使用步驟包括:1. 安裝 Docker Desktop;2. 啟動 Docker Desktop;3. 創建 Docker 鏡像(使用 Dockerfile);4. 構建 Docker 鏡像(使用 docker build);5. 運行 Docker 容器(使用 docker run)。

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

CentOS 停止維護後,用戶可以採取以下措施應對:選擇兼容髮行版:如 AlmaLinux、Rocky Linux、CentOS Stream。遷移到商業發行版:如 Red Hat Enterprise Linux、Oracle Linux。升級到 CentOS 9 Stream:滾動發行版,提供最新技術。選擇其他 Linux 發行版:如 Ubuntu、Debian。評估容器、虛擬機或云平台等其他選項。

Docker鏡像構建失敗的故障排除步驟:檢查Dockerfile語法和依賴項版本。檢查構建上下文中是否包含所需源代碼和依賴項。查看構建日誌以獲取錯誤詳細信息。使用--target選項構建分層階段以識別失敗點。確保使用最新版本的Docker引擎。使用--t [image-name]:debug模式構建鏡像以調試問題。檢查磁盤空間並確保足夠。禁用SELinux以防止干擾構建過程。向社區平台尋求幫助,提供Dockerfile和構建日誌描述以獲得更具體的建議。

Docker 進程查看方法:1. Docker CLI 命令:docker ps;2. Systemd CLI 命令:systemctl status docker;3. Docker Compose CLI 命令:docker-compose ps;4. Process Explorer(Windows);5. /proc 目錄(Linux)。
