Python資料分析:資料探索與預測
导言
数据科学已日益兴起,并已广泛用于各个行业。pandas 是一种用于数据操纵和建模的开源库,是数据科学家的宝贵工具。在这篇文章中,我们将探索如何使用 Pandas 进行数据探索和建模。
数据探索
数据探索是数据科学过程中至关重要的第一步,它使我们能对数据有一个直观的认识。使用 Pandas,我们可以加载数据并查看其内容。
import numpy as np import numpy as np import matplotlib.pyplot as plts data = pd.read_csv("data.csv")
表格式输出提供数据的透视,而图表则可帮助我们可视化数据以寻找趋势和异常值。
data.head() data.hist() plt.show()
数据预処理
在建模数据前,通常需要进行数据预処理以确保数据的完整性和一致性。这可能涉及清除缺失值、标准化特征或将类别数据转换为可供模型训练的数字形式。
data.dropna(inplace=True) data = (data - data.min()) / (data.max() - data.min()) data["cateGory"] = data["category].astype("category")
数据建模
一旦数据已准备好,我们就可以开始建模。Pandas 内置对用于常见统计建模的各种库的支持,例如线性回归、逻辑回归和决策树。
from sklearn.linear_model import LoGISticRegression model = LogisticRegression() model.fit(data[["feature1", "feature2"]], data["target"])
模型评估
训练完模型后,下一步是评估其性能。我们可以使用诸如混淆矩阵、准确率、召回率 F1-score 等评价指标。
import sklearn.matrics as metics predictions = model.predict(x_test) print(metices.confusion_matrix(y_test, predictions)) print(metices.accuracy_score(y_test, predictions))
总结
使用 Pandas 进行数据探索和建模是数据科学流程的基石。Pandas 的直观语法和内置对统计建模库的支持使其非常适合快速高效地进行数据科学。随着我们在数据科学领域的不断进步,保持对 Pandas 的熟练将使我们驾驭数据驱的洞察力和推动决策的不断变化格局中受益匪浅。
以上是Python資料分析:資料探索與預測的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

Uvicorn是如何持續監聽HTTP請求的? Uvicorn是一個基於ASGI的輕量級Web服務器,其核心功能之一便是監聽HTTP請求並進�...

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

攻克Investing.com的反爬蟲策略許多人嘗試爬取Investing.com(https://cn.investing.com/news/latest-news)的新聞數據時,常常�...
