RNN模型挑戰Transformer霸權! 1%成本性能比肩Mistral-7B,支援100+種語言全球最多
在大模型內卷的同時,Transformer的地位也接連受到挑戰。
近日,RWKV發布了Eagle 7B模型,基於最新的RWKV-v5架構。
Eagle 7B在多語言基準測試中脫穎而出,在英語測試中與頂尖模型不相上下。
同時,Eagle 7B用的是RNN架構,相較於同尺寸的Transformer模型,推理成本降低了10-100倍以上,可以說是世界上最環保的7B模型。
由於RWKV-v5的論文可能要下個月才能發布,我們先提供RWKV的論文,這是第一個將參數擴展到數百億的非Transformer架構。
圖片
論文網址:https://arxiv.org/pdf/2305.13048.pdf
#EMNLP 2023錄用了這篇工作,作者來自世界各地的頂尖大學、研究機構和科技公司。
下面是Eagle 7B的官圖,表示這隻老鷹正在飛躍變形金剛。
圖片
Eagle 7B
Eagle 7B使用來自100多種語言的,1.1T(兆)個Token的訓練數據,在下圖的多語言基準測試中,Eagle 7B平均成績位居第一。
基準測試包括xLAMBDA、xStoryCloze、xWinograd和xCopa,涵蓋了23種語言,以及各自語言的常識推理。
Eagle 7B拿到了其中三項的第一,儘管有一項沒打過Mistral-7B,屈居第二,但對手使用的訓練資料要遠高於Eagle。
圖片
下圖的英文測驗包含了12個獨立的基準、常識推理和世界知識。
在英文表現測試中,Eagle 7B的程度接近Falcon(1.5T)、LLaMA2(2T)、Mistral(>2T),與同樣使用了1T左右訓練資料的MPT-7B不相上下。
圖片
並且,在兩種測試中,新的v5架構相比於之前的v4,有了巨大的整體飛躍。
Eagle 7B目前由Linux基金會託管,以Apache 2.0許可證授權,可以不受限制地用於個人或商業用途。
多語言支援
前面說了,Eagle 7B的訓練資料來自100多種語言,而上面採用的4項多語言基準測試只包括了23種語言。
圖片
雖然取得了第一名的成績,但總的來說,Eagle 7B是吃虧的,畢竟,基準測試無法直接評估模型在其他70多種語言中的表現。
額外的訓練代價並不能幫助自己刷榜,如果集中在英語,可能會獲得比現在更好的成績。
——那麼,RWKV為什麼要這麼做呢?官方對此表示:
Building inclusive AI for everyone in this world —— not just the English
##在對於RWKV模型的眾多反饋中,最常見的是:
多語言方法損害了模型的英語評估分數,並減緩了線性Transformer的發展;
讓多語言模型與純英語模型,比較多語言表現是不公平的
官方表示,「在大多數情況下,我們同意這些意見,」 #
「但我們沒有計劃改變這一點,因為我們正在為世界建立人工智慧——這不僅僅是一個英語世界。」
##圖片
2023年,世界上只有17%的人口會說英語(大約13億人),但是,透過支援世界上排名前25位的語言,模型可以涵蓋大約40億人,即世界人口總數的50%。
團隊希望未來的人工智慧可以為每個人都提供幫助,例如讓模型可以在低端硬體上以低廉的價格運行,例如支援更多的語言。
團隊將在之後逐漸擴大多語言資料集,以支援更廣泛的語言,並慢慢將覆蓋範圍擴大到世界上100%的地區,—確保沒有語言被遺漏。
資料集可擴展架構
在模型的訓練過程中,有一個值得注意的現象:
#隨著訓練資料規模不斷增加,模型的效能逐漸進步,當訓練資料達到300B左右時,模型顯示出與pythia-6.9b 相似的效能,而後者的訓練資料量為300B。
圖片
這個現象與先前在RWKV-v4架構上進行的一項實驗相同,--也就是說,在訓練資料規模相同的情況下,像RWKV這種線性Transformer的效能會和Transformer差不多。
那麼我們不禁要問,如果確實如此,那麼是不是相比於確切的架構,資料反而對模型的效能提升更加重要?
圖片
我們知道,Transformer類別的模型,計算和儲存代價是平方層級的,而在上圖中RWKV架構的運算成本只是隨著Token數線性成長。
也許我們應該尋求更有效率、更可擴展的架構,以提高可訪問性,降低每個人的人工智慧成本,並減少對環境的影響。
RWKV
RWKV架構是具有GPT等級LLM效能的RNN,同時又可以像Transformer一樣並行化訓練。
RWKV結合了RNN和Transformer的優點——出色的性能、快速推理、快速訓練、節省VRAM、「無限」的上下文長度和免費的句子嵌入,RWKV並不使用注意力機制。
下圖展示了RWKV與Transformer派模型在計算成本上的比較:
圖片
圖片
下圖中左邊為RWKV塊元素,右邊為RWKV殘差塊,以及用於語言建模的最終頭部。
圖片
這裡也引入了一個單獨處理目前Token的向量,以補償潛在的退化。
RWKV可以在我們所說的時間並行模式下有效地並行化(矩陣乘法)。 在循環網路中,通常使用前一時刻的輸出作為當下時刻的輸入。這在語言模型的自回歸解碼推理中尤其明顯,它要求在輸入下一步之前計算每個令牌,從而使RWKV能夠利用其類似RNN的結構,稱為時間順序模式。 在這種情況下,RWKV可以方便地遞歸表述,以便在推理過程中進行解碼,它利用了每個輸出令牌僅依賴最新狀態的優勢,狀態的大小是恆定的,而與序列長度無關。 然後充當RNN解碼器,相對於序列長度產生恆定的速度和記憶體佔用,從而能夠更有效地處理較長的序列。 相比之下,自註意力的KV快取相對於序列長度不斷增長,從而導致效率下降,並隨著序列的延長而增加記憶體佔用和時間。 參考資料:圖片
以上是RNN模型挑戰Transformer霸權! 1%成本性能比肩Mistral-7B,支援100+種語言全球最多的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

為了將大型語言模型(LLM)與人類的價值和意圖對齊,學習人類回饋至關重要,這能確保它們是有用的、誠實的和無害的。在對齊LLM方面,一種有效的方法是根據人類回饋的強化學習(RLHF)。儘管RLHF方法的結果很出色,但其中涉及了一些優化難題。其中涉及訓練一個獎勵模型,然後優化一個策略模型來最大化該獎勵。近段時間已有一些研究者探索了更簡單的離線演算法,其中之一就是直接偏好優化(DPO)。 DPO是透過參數化RLHF中的獎勵函數來直接根據偏好資料學習策略模型,這樣就無需顯示式的獎勵模型了。此方法簡單穩定

根據TrendForce的調查報告顯示,AI浪潮對DRAM記憶體和NAND快閃記憶體市場帶來明顯影響。在本站5月7日消息中,TrendForce集邦諮詢在今日的最新研報中稱該機構調升本季兩類儲存產品的合約價格漲幅。具體而言,TrendForce原先預估2024年第二季DRAM記憶體合約上漲3~8%,現估計為13~18%;而在NAND快閃記憶體方面,原預估上漲13~18%,新預估為15 ~20%,僅eMMC/UFS漲幅較低,為10%。 ▲圖源TrendForce集邦諮詢TrendForce表示,該機構原預計在連續

本地微調 DeepSeek 類模型面臨著計算資源和專業知識不足的挑戰。為了應對這些挑戰,可以採用以下策略:模型量化:將模型參數轉換為低精度整數,減少內存佔用。使用更小的模型:選擇參數量較小的預訓練模型,便於本地微調。數據選擇和預處理:選擇高質量的數據並進行適當的預處理,避免數據質量不佳影響模型效果。分批訓練:對於大數據集,分批加載數據進行訓練,避免內存溢出。利用 GPU 加速:利用獨立顯卡加速訓練過程,縮短訓練時間。

1.首先,進入Edge瀏覽器點選右上角三個點。 2、然後,在工作列中選擇【擴充】。 3、接著,將不需要使用的插件關閉或卸載即可。

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显著突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

寫在前面&筆者的個人理解這篇論文致力於解決當前多模態大語言模型(MLLMs)在自動駕駛應用中存在的關鍵挑戰,即將MLLMs從2D理解擴展到3D空間的問題。由於自動駕駛車輛(AVs)需要針對3D環境做出準確的決策,這項擴展顯得格外重要。 3D空間理解對於AV來說至關重要,因為它直接影響車輛做出明智決策、預測未來狀態以及與環境安全互動的能力。目前的多模態大語言模型(如LLaVA-1.5)通常只能處理較低解析度的影像輸入(例如),這是由於視覺編碼器的分辨率限制,LLM序列長度的限制。然而,自動駕駛應用需
