目錄
正確答案
首頁 後端開發 Python教學 more_itertools 無法在 Python 3.6 中從 functools 匯入cached_property

more_itertools 無法在 Python 3.6 中從 functools 匯入cached_property

Feb 22, 2024 pm 01:40 PM

more_itertools 无法在 Python 3.6 中从 functools 导入cached_property

問題內容

我嘗試使用以下命令從 visual studio 程式碼中的終端執行grade_analysis.py:

~/documents/school/ml4t_2023fall/assess_portfolio$ pythonpath=../:. python grade_analysis.py 根據班級設定說明

但是,當我運行命令時,grade_analysis.py 似乎無法提升等級並從 grading.grading.py 檔案中獲取資訊。

我使用這個指令是錯誤的還是遺漏了什麼?

這是我收到的錯誤:

2023fall/assess_portfolio$ pythonpath=../:. python grade_analysis.py
traceback (most recent call last):
  file "grade_analysis.py", line 20, in <module>
    import pytest                                                                                                                                                         
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/pytest.py", line 34, in <module>
    from _pytest.python_api import approx
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/_pytest/python_api.py", line 13, in <module>
    from more_itertools.more import always_iterable
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/more_itertools/__init__.py", line 3, in <module>
    from .more import *  # noqa
  file "/home/clopez/miniconda3/envs/ml4t/lib/python3.6/site-packages/more_itertools/more.py", line 5, in <module>
    from functools import cached_property, partial, reduce, wraps
importerror: cannot import name 'cached_property'
登入後複製

環境設定說明

conda 環境 yml

name: ml4t
channels:
- conda-forge
- defaults
dependencies:
- python=3.6
- cycler=0.10.0
- kiwisolver=1.1.0
- matplotlib=3.0.3
- numpy=1.16.3
- pandas=0.24.2
- pyparsing=2.4.0
- python-dateutil=2.8.0
- pytz=2019.1
- scipy=1.2.1
- seaborn=0.9.0
- six=1.12.0
- joblib=0.13.2
- pytest=5.0
- pytest-json=0.4.0
- future=0.17.1
- pprofile=2.0.2
- pip
- pip:
  - jsons==0.8.8
  - gradescope-utils
  - subprocess32
登入後複製

等級分析.py

"""MC1-P1: Analyze a portfolio - grading script.                                                                                              
                                                                                              
Usage:                                                                                                
- Switch to a student feedback directory first (will write "points.txt" and "comments.txt" in pwd).                                                                                               
- Run this script with both ml4t/ and student solution in PYTHONPATH, e.g.:                                                                                               
    PYTHONPATH=ml4t:MC1-P1/jdoe7 python ml4t/mc1_p1_grading/grade_analysis.py                                                                                             
                                                                                              
Copyright 2017, Georgia Tech Research Corporation                                                                                             
Atlanta, Georgia 30332-0415                                                                                               
All Rights Reserved                                                                                               
"""                                                                                               
                                                                                              
import datetime                                                                                               
import os                                                                                             
import sys                                                                                                
import traceback as tb                                                                                                
from collections import OrderedDict, namedtuple                                                                                               
                                                                                              
import pandas as pd                                                                                               
import pytest                                                                                             
from grading.grading import (                                                                                             
    GradeResult,                                                                                              
    IncorrectOutput,                                                                                              
    grader,                                                                                               
    run_with_timeout,                                                                                             
)                                                                                             
from util import get_data                                                                                             
                                                                                              
# Student code                                                                                                
# Spring '16 renamed package to just "analysis" (BPH)                                                                                             
main_code = "analysis"  # module name to import                                                                                               
                                                                                              
# Test cases                                                                                              
# Spring '16 test cases only check sharp ratio, avg daily ret, and cum_ret (BPH)                                                                                              
PortfolioTestCase = namedtuple(                                                                                               
    "PortfolioTestCase", ["inputs", "outputs", "description"]                                                                                             
)                                                                                             
portfolio_test_cases = [                                                                                              
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("GOOG", 0.2), ("AAPL", 0.3), ("GLD", 0.4), ("XOM", 0.1)]                                                                                                
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.255646784534,                                                                                               
            avg_daily_ret=0.000957366234238,                                                                                              
            sharpe_ratio=1.51819243641,                                                                                               
        ),                                                                                                
        description="Wiki example 1",                                                                                             
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.0), ("HPQ", 0.0), ("IBM", 0.0), ("HNZ", 1.0)]                                                                                              
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.198105963655,                                                                                               
            avg_daily_ret=0.000763106152672,                                                                                              
            sharpe_ratio=1.30798398744,                                                                                               
        ),                                                                                                
        description="Wiki example 2",                                                                                             
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-06-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("GOOG", 0.2), ("AAPL", 0.3), ("GLD", 0.4), ("XOM", 0.1)]                                                                                                
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.205113938792,                                                                                               
            avg_daily_ret=0.00129586924366,                                                                                               
            sharpe_ratio=2.21259766672,                                                                                               
        ),                                                                                                
        description="Wiki example 3: Six month range",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2013-05-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.3), ("HPQ", 0.5), ("IBM", 0.1), ("GOOG", 0.1)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.110888530433,                                                                                              
            avg_daily_ret=-6.50814806831e-05,                                                                                             
            sharpe_ratio=-0.0704694718385,                                                                                                
        ),                                                                                                
        description="Normalization check",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-01-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.9), ("HPQ", 0.0), ("IBM", 0.1), ("GOOG", 0.0)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.0758725033871,                                                                                             
            avg_daily_ret=-0.00411578300489,                                                                                              
            sharpe_ratio=-2.84503813366,                                                                                              
        ),                                                                                                
        description="One month range",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2011-01-01",                                                                                              
            end_date="2011-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("WFR", 0.25), ("ANR", 0.25), ("MWW", 0.25), ("FSLR", 0.25)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.686004563165,                                                                                              
            avg_daily_ret=-0.00405018240566,                                                                                              
            sharpe_ratio=-1.93664660013,                                                                                              
        ),                                                                                                
        description="Low Sharpe ratio",                                                                                               
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2010-01-01",                                                                                              
            end_date="2010-12-31",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("AXP", 0.0), ("HPQ", 1.0), ("IBM", 0.0), ("HNZ", 0.0)]                                                                                              
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=-0.191620333598,                                                                                              
            avg_daily_ret=-0.000718040989619,                                                                                             
            sharpe_ratio=-0.71237182415,                                                                                              
        ),                                                                                                
        description="All your eggs in one basket",                                                                                                
    ),                                                                                                
    PortfolioTestCase(                                                                                                
        inputs=dict(                                                                                              
            start_date="2006-01-03",                                                                                              
            end_date="2008-01-02",                                                                                                
            symbol_allocs=OrderedDict(                                                                                                
                [("MMM", 0.0), ("MO", 0.9), ("MSFT", 0.1), ("INTC", 0.0)]                                                                                             
            ),                                                                                                
            start_val=1000000,                                                                                                
        ),                                                                                                
        outputs=dict(                                                                                             
            cum_ret=0.43732715979,                                                                                                
            avg_daily_ret=0.00076948918955,                                                                                               
            sharpe_ratio=1.26449481371,                                                                                               
        ),                                                                                                
        description="Two year range",                                                                                             
    ),                                                                                                
]                                                                                             
abs_margins = dict(                                                                                               
    cum_ret=0.001, avg_daily_ret=0.00001, sharpe_ratio=0.001                                                                                              
)  # absolute margin of error for each output                                                                                             
points_per_output = dict(                                                                                             
    cum_ret=2.5, avg_daily_ret=2.5, sharpe_ratio=5.0                                                                                              
)  # points for each output, for partial credit                                                                                               
points_per_test_case = sum(points_per_output.values())                                                                                                
max_seconds_per_call = 5                                                                                              
                                                                                              
# Grading parameters (picked up by module-level grading fixtures)                                                                                             
max_points = float(len(portfolio_test_cases) * points_per_test_case)                                                                                              
html_pre_block = (                                                                                                
    True  # surround comments with HTML <pre class="brush:php;toolbar:false"> tag (for T-Square comments field)                                                                                               
)                                                                                             
                                                                                              
# Test functon(s)                                                                                             
@pytest.mark.parametrize("inputs,outputs,description", portfolio_test_cases)                                                                                              
def test_analysis(inputs, outputs, description, grader):                                                                                              
    """Test get_portfolio_value() and get_portfolio_stats() return correct values.                                                                                                
                                                                                              
    Requires test inputs, expected outputs, description, and a grader fixture.                                                                                                
    """                                                                                               
                                                                                              
    points_earned = 0.0  # initialize points for this test case                                                                                               
    try:                                                                                              
        # Try to import student code (only once)                                                                                              
        if not main_code in globals():                                                                                                
            import importlib                                                                                              
                                                                                              
            # * Import module                                                                                             
            mod = importlib.import_module(main_code)                                                                                              
            globals()[main_code] = mod                                                                                                
                                                                                              
        # Unpack test case                                                                                                
        start_date_str = inputs["start_date"].split("-")                                                                                              
        start_date = datetime.datetime(                                                                                               
            int(start_date_str[0]),                                                                                               
            int(start_date_str[1]),                                                                                               
            int(start_date_str[2]),                                                                                               
        )                                                                                             
        end_date_str = inputs["end_date"].split("-")                                                                                              
        end_date = datetime.datetime(                                                                                             
            int(end_date_str[0]), int(end_date_str[1]), int(end_date_str[2])                                                                                              
        )                                                                                             
        symbols = list(                                                                                               
            inputs["symbol_allocs"].keys()                                                                                                
        )  # e.g.: ['GOOG', 'AAPL', 'GLD', 'XOM']                                                                                             
        allocs = list(                                                                                                
            inputs["symbol_allocs"].values()                                                                                              
        )  # e.g.: [0.2, 0.3, 0.4, 0.1]                                                                                               
        start_val = inputs["start_val"]                                                                                               
        risk_free_rate = inputs.get("risk_free_rate", 0.0)                                                                                                
                                                                                              
        # the wonky unpacking here is so that we only pull out the values we say we'll test.                                                                                              
        def timeoutwrapper_analysis():                                                                                                
            student_rv = analysis.assess_portfolio(                                                                                               
                sd=start_date,                                                                                                
                ed=end_date,                                                                                              
                syms=symbols,                                                                                             
                allocs=allocs,                                                                                                
                sv=start_val,                                                                                             
                rfr=risk_free_rate,                                                                                               
                sf=252.0,                                                                                             
                gen_plot=False,                                                                                               
            )                                                                                             
            return student_rv                                                                                             
                                                                                              
        result = run_with_timeout(                                                                                                
            timeoutwrapper_analysis, max_seconds_per_call, (), {}                                                                                             
        )                                                                                             
        student_cr = result[0]                                                                                                
        student_adr = result[1]                                                                                               
        student_sr = result[3]                                                                                                
        port_stats = OrderedDict(                                                                                             
            [                                                                                             
                ("cum_ret", student_cr),                                                                                              
                ("avg_daily_ret", student_adr),                                                                                               
                ("sharpe_ratio", student_sr),                                                                                             
            ]                                                                                             
        )                                                                                             
        # Verify against expected outputs and assign points                                                                                               
        incorrect = False                                                                                             
        msgs = []                                                                                             
        for key, value in port_stats.items():                                                                                             
            if abs(value - outputs[key]) > abs_margins[key]:                                                                                              
                incorrect = True                                                                                              
                msgs.append(                                                                                              
                    "    {}: {} (expected: {})".format(                                                                                               
                        key, value, outputs[key]                                                                                              
                    )                                                                                             
                )                                                                                             
            else:                                                                                             
                points_earned += points_per_output[key]  # partial credit                                                                                             
                                                                                              
        if incorrect:                                                                                             
            inputs_str = (                                                                                                
                "    start_date: {}\n"                                                                                                
                "    end_date: {}\n"                                                                                              
                "    symbols: {}\n"                                                                                               
                "    allocs: {}\n"                                                                                                
                "    start_val: {}".format(                                                                                               
                    start_date, end_date, symbols, allocs, start_val                                                                                              
                )                                                                                             
            )                                                                                             
            raise IncorrectOutput(                                                                                                
                "One or more stats were incorrect.\n  Inputs:\n{}\n  Wrong"                                                                                               
                " values:\n{}".format(inputs_str, "\n".join(msgs))                                                                                                
            )                                                                                             
    except Exception as e:                                                                                                
        # Test result: failed                                                                                             
        msg = "Test case description: {}\n".format(description)                                                                                               
                                                                                              
        # Generate a filtered stacktrace, only showing erroneous lines in student file(s)                                                                                             
        tb_list = tb.extract_tb(sys.exc_info()[2])                                                                                                
        for i in range(len(tb_list)):                                                                                             
            row = tb_list[i]                                                                                              
            tb_list[i] = (                                                                                                
                os.path.basename(row[0]),                                                                                             
                row[1],                                                                                               
                row[2],                                                                                               
                row[3],                                                                                               
            )  # show only filename instead of long absolute path                                                                                             
        tb_list = [row for row in tb_list if row[0] == "analysis.py"]                                                                                             
        if tb_list:                                                                                               
            msg += "Traceback:\n"                                                                                             
            msg += "".join(tb.format_list(tb_list))  # contains newlines                                                                                              
        msg += "{}: {}".format(e.__class__.__name__, str(e))                                                                                              
                                                                                              
        # Report failure result to grader, with stacktrace                                                                                                
        grader.add_result(                                                                                                
            GradeResult(outcome="failed", points=points_earned, msg=msg)                                                                                              
        )                                                                                             
        raise                                                                                             
    else:                                                                                             
        # Test result: passed (no exceptions)                                                                                             
        grader.add_result(                                                                                                
            GradeResult(outcome="passed", points=points_earned, msg=None)                                                                                             
        )                                                                                             
                                                                                              
                                                                                              
if __name__ == "__main__":                                                                                                
    pytest.main(["-s", __file__])
登入後複製

我已啟動 conda 環境並設定文件,以便它應該能夠存取 util.py 檔案和 grading.py 檔案。

我希望運行命令後,analysis.py 檔案將使用grade_analysis.py 進行評分。


正確答案


這就是為什麼使用 conda-lock 鎖定檔案(或容器化)比使用 yaml 更能實現長期可重複性。附加相依性(如 more-itertools)在 yaml 中不受限制,且其他套件的依賴項可能沒有適當的上限。在這種情況下,op 最終得到了 more_itertools 模組的一個版本,該模組引用了後來才添加到 functools 的內容。

二分法顯示了從 more_itertools v10 開始的有問題的參考(對 cached_property),因此設定上限應該可以解決問題:

name: ml4t
channels:
  - conda-forge
  - defaults
dependencies:
  - python=3.6
  - cycler=0.10.0
  - kiwisolver=1.1.0
  - matplotlib=3.0.3
  - more-itertools<10  # <- prevent v10+
  - numpy=1.16.3
  - pandas=0.24.2
  - pyparsing=2.4.0
  - python-dateutil=2.8.0
  - pytz=2019.1
  - scipy=1.2.1
  - seaborn=0.9.0
  - six=1.12.0
  - joblib=0.13.2
  - pytest=5.0
  - pytest-json=0.4.0
  - future=0.17.1
  - pprofile=2.0.2
  - pip
  - pip:
    - jsons==0.8.8
    - gradescope-utils
    - subprocess32

登入後複製

使用此 yaml,並測試導致錯誤的導入現在可以正常工作:

$ python -c "from more_itertools.more import always_iterable"
$ echo $?
0
登入後複製

以上是more_itertools 無法在 Python 3.6 中從 functools 匯入cached_property的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

如何解決Linux終端中查看Python版本時遇到的權限問題? 如何解決Linux終端中查看Python版本時遇到的權限問題? Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到? 如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎? 如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎? Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中? 在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

Uvicorn是如何在沒有serve_forever()的情況下持續監聽HTTP請求的? Uvicorn是如何在沒有serve_forever()的情況下持續監聽HTTP請求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持續監聽HTTP請求的? Uvicorn是一個基於ASGI的輕量級Web服務器,其核心功能之一便是監聽HTTP請求並進�...

在Linux終端中使用python --version命令時如何解決權限問題? 在Linux終端中使用python --version命令時如何解決權限問題? Apr 02, 2025 am 06:36 AM

Linux終端中使用python...

如何繞過Investing.com的反爬蟲機制獲取新聞數據? 如何繞過Investing.com的反爬蟲機制獲取新聞數據? Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬蟲策略許多人嘗試爬取Investing.com(https://cn.investing.com/news/latest-news)的新聞數據時,常常�...

See all articles