補齊Transformer規劃短板,田徑棟團隊的Searchformer火了
Transformer 強大的泛化能力再次證明!
近年來,基於Transformer的結構在各種任務中展現出色的性能,引起了全球的關注。利用這種結構並結合大量數據,產生的大型語言模型(LLM)等模型可以很好地適用於實際應用場景。
儘管在某些領域取得了成功,但基於 Transformer 的結構和 LLM 仍然面臨挑戰,尤其是在處理規劃和推理任務方面。先前的研究表明,LLM 在應對多步驟規劃任務或高階推理任務時存在困難。
為了提升 Transformer 的推理和規劃性能,近年來研究社群也提出了一些方法。一個最常見且有效的方法是模擬人類的思考過程:先生成中間「思維」,然後再輸出回應。例如思考鏈(CoT)提示法就是鼓勵模型預測中間步驟,進行步驟的「思考」。思考樹(ToT)則使用了分支策略和評判方法,讓模型產生多個不同的思考路徑,然後從中選出最佳路徑。儘管這些技術通常是有效的,但也有研究表明,在許多案例中,這些方法會讓模型的表現下降,原因包括自我強制(self-enforcing)。
在某個資料集上表現良好的技術,可能在處理其他資料集時效果不佳。這可能是因為所需的推理類型發生了變化,例如從空間推理轉變為數學推理或常識推理。
相較之下,傳統的符號規劃和搜尋技術展現了出色的推理能力。此外,這些傳統方法所計算出的解決方案通常擁有形式上的保證,因為符號規劃演算法通常遵循著明確定義的基於規則的搜尋過程。
為了讓 Transformer 具備複雜推理能力,Meta FAIR 田徑棟團隊近日提出了 Searchformer。
論文標題:Beyond A∗: Better Planning with Transformers via Search Dynamics Bootstrapping
#論文地址:https://arxiv.org/pdf/2402.14083.pdf
Searchformer 是一種Transformer 模型,但針對迷宮導航和推箱子等多步驟規劃任務,它卻能計算出最優規劃且所用搜尋步驟數也能遠少於A∗ 搜尋等符號規劃演算法。
為了做到這一點,團隊提出了一種新方法:搜尋動態引導(search dynamics bootstrapping)。此方法首先是訓練一個Transformer 模型來模仿A∗ 的搜尋過程(如圖1 所示,然後對其進行微調,使其能用更少的搜尋步數找到最優規劃。
#更詳細地說,第一步,訓練一個模仿A∗ 搜尋的Transformer 模型。在這裡,該團隊的做法是針對隨機生成的規劃任務實例執行A* 搜尋。在執行A∗時,團隊會記錄執行的計算和最優規劃並將其整理成詞序列,即token。這樣一來,所得到的訓練資料集就包含了A∗ 的執行軌跡並編碼了有關A∗ 本身的搜尋動態的資訊。然後,訓練一個Transformer 模型,讓其能針對任意規劃任務沿最優規劃生成這些token 序列。
第二步,使用專家迭代(expert iteration)方法進一步提升使用上述經過搜尋增強的序列(包含A∗ 的執行軌跡)訓練的Searchformer。專家迭代方法可讓Transformer 憑藉較少的搜尋步驟產生最佳解。這個過程會得到一種神經規劃演算法,其隱含編碼在該Transformer 的網路權重之中,且它有很高的機率以少於A∗ 搜尋的搜尋步數找到最優規劃。比如說,在執行推箱子任務時,新模型能解答93.7% 的測試任務,同時搜尋步數比A∗ 搜尋平均少26.8%。
該團隊表示:這為Transformer 超越傳統符號規劃演算法鋪平了道路。
##實驗
#為了更好地理解訓練資料和模型參數量對所得模型表現的影響,他們進行了一些消融研究。他們使用了兩類資料集訓練模型:一種的token序列中只包含解(solution-only,其中只有任務描述和最終規劃);另一種則是搜尋增強型序列(search-augmented,其中包含任務描述、搜尋樹動態和最終規劃)。實驗中,團隊使用了A∗ 搜尋的一種確定性和非確定性變體來產生每個序列資料集。##迷宮導航######################################################## #在第一個實驗中,團隊訓練了一組編碼器- 解碼器Transformer 模型來預測30×30 迷宮中的最優路徑。###
圖 4 表明,透過預測中間計算步驟,可在資料量少時獲得更穩健的效能表現。
圖 5 給出了僅使用解訓練的模型的表現。
圖 6 展示了任務難度對每個模型的表現的影響。
整體而言,儘管當使用的訓練資料集足夠大且足夠多樣化時,僅使用解訓練的模型也能預測得到最優規劃,但當數據量少時,經過搜尋增強的模型的表現明顯好得多,並且也能更好地擴展用於更困難的任務。
推盒子
為了測試能否在不同且更複雜的任務(具有不同的token 化模式)上得到類似的結果,團隊也產生了一個推箱子的規劃資料集進行測試。
圖 7 展示了每種模型針對每個測試任務產生正確規劃的機率。
可以看到,和上一個實驗一樣,透過使用執行軌跡進行訓練,搜尋增強型模型的表現優於僅使用解訓練的模型。
Searchformer:透過引導方法提升搜尋動態
最後一個實驗,該團隊研究了搜尋增強模型可以如何迭代提升,從而憑藉更少的搜尋步數計算出最優規劃。這裡的目標是在縮短搜尋軌跡長度的同時依然得到最優解。
圖 8 表明,新提出的搜尋動態引導方法能夠迭代式地縮短 Searchformer 模型產生的序列的長度。
以上是補齊Transformer規劃短板,田徑棟團隊的Searchformer火了的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

但可能打不過公園裡的老大爺?巴黎奧運正在如火如荼地進行中,乒乓球項目備受關注。同時,機器人打乒乓球也取得了新突破。剛剛,DeepMind提出了第一個在競技乒乓球比賽中達到人類業餘選手等級的學習型機器人智能體。論文地址:https://arxiv.org/pdf/2408.03906DeepMind這個機器人打乒乓球什麼程度呢?大概和人類業餘選手不相上下:正手反手都會:對手採用多種打法,機器人也能招架得住:接不同旋轉的發球:不過,比賽激烈程度似乎不如公園老大爺對戰。對機器人來說,乒乓球運動

8月21日,2024世界機器人大會在北京隆重召開。商湯科技旗下家用機器人品牌「元蘿蔔SenseRobot」家族全系產品集體亮相,並最新發布元蘿蔔AI下棋機器人-國際象棋專業版(以下簡稱「元蘿蔔國象機器人」),成為全球首個走進家庭的西洋棋機器人。作為元蘿蔔的第三款下棋機器人產品,全新的國象機器人在AI和工程機械方面進行了大量專項技術升級和創新,首次在家用機器人上實現了透過機械爪拾取立體棋子,並進行人機對弈、人人對弈、記譜複盤等功能,

開學將至,該收心的不只即將開啟新學期的同學,可能還有AI大模型。前段時間,Reddit擠滿了吐槽Claude越來越懶的網友。 「它的水平下降了很多,經常停頓,甚至輸出也變得很短。在發布的第一周,它可以一次性翻譯整整4頁文稿,現在連半頁都輸出不了!」https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/在一個名為“對Claude徹底失望了的帖子裡”,滿滿地

在北京舉行的世界機器人大會上,人形機器人的展示成為了現場絕對的焦點,在星塵智能的展台上,由於AI機器人助理S1在一個展區上演揚琴、武術、書法三台大戲,能文能武,吸引了大量專業觀眾和媒體的駐足。在有彈性的琴弦上優雅的演奏,讓S1展現出速度、力度、精準度兼具的精細操作與絕對掌控。央視新聞對「書法」背後的模仿學習和智慧控制進行了專題報道,公司創始人來傑解釋到,絲滑動作的背後,是硬體側追求最好力控和最仿人身體指標(速度、負載等),而是在AI側則採集人的真實動作數據,讓機器人遇強則強,快速學習進化。而敏捷

本屆ACL大會,投稿者「收穫滿滿」。為期六天的ACL2024正在泰國曼谷舉辦。 ACL是計算語言學和自然語言處理領域的頂級國際會議,由國際計算語言學協會組織,每年舉辦一次。一直以來,ACL在NLP領域的學術影響力都名列第一,它也是CCF-A類推薦會議。今年的ACL大會已是第62屆,接收了400餘篇NLP領域的前沿工作。昨天下午,大會公佈了最佳論文等獎項。此次,最佳論文獎7篇(兩篇未公開)、最佳主題論文獎1篇、傑出論文獎35篇。大會也評出了資源論文獎(ResourceAward)3篇、社會影響力獎(

今天下午,鸿蒙智行正式迎来了新品牌与新车。8月6日,华为举行鸿蒙智行享界S9及华为全场景新品发布会,带来了全景智慧旗舰轿车享界S9、问界新M7Pro和华为novaFlip、MatePadPro12.2英寸、全新MatePadAir、华为毕昇激光打印机X1系列、FreeBuds6i、WATCHFIT3和智慧屏S5Pro等多款全场景智慧新品,从智慧出行、智慧办公到智能穿戴,华为全场景智慧生态持续构建,为消费者带来万物互联的智慧体验。鸿蒙智行:深度赋能,推动智能汽车产业升级华为联合中国汽车产业伙伴,为

視覺與機器人學習的深度融合。當兩隻機器手絲滑地互相合作疊衣服、倒茶、將鞋子打包時,加上最近老上頭條的1X人形機器人NEO,你可能會產生一種感覺:我們似乎開始進入機器人時代了。事實上,這些絲滑動作正是先進機器人技術+精妙框架設計+多模態大模型的產物。我們知道,有用的機器人往往需要與環境進行複雜精妙的交互,而環境則可被表示成空間域和時間域上的限制。舉個例子,如果要讓機器人倒茶,那麼機器人首先需要抓住茶壺手柄並使之保持直立,不潑灑出茶水,然後平穩移動,一直到讓壺口與杯口對齊,之後以一定角度傾斜茶壺。這

機器之能報道編輯:楊文誰能成為AI視訊圈的King?美劇《權力的遊戲》中,有一把「鐵王座」。傳說,它由巨龍「黑死神」熔掉數千把敵人丟棄的利劍鑄成,象徵無上的權威。為了坐上這張鐵椅,各大家族展開了一場場爭鬥和廝殺。而自Sora出現以來,AI電圈也掀起了一場轟轟烈烈的「權力的遊戲」,這場遊戲的玩家主要有大洋彼岸的RunwayGen-3、Luma,國內的快手可靈、字節即夢、智譜清影、Vidu、PixVerseV2等。今天我們就來測評一下,看看究竟誰有資格登上AI視訊圈的「鐵王座」。 -1-文生視頻
