一文搞懂:AI、機器學習與深度學習的連結與區別
在當今科技日新月異的浪潮中,人工智慧(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)與深度學習(Deep Learning, DL)如同璀璨星辰,引領著資訊科技的新浪潮。這三個詞彙經常出現在各種前沿討論和實際應用中,但對於許多初涉此領域的探索者來說,它們的具體含義及相互之間的內在聯繫可能仍籠罩著一層神秘面紗。
那讓我們先來看看這張圖。
可以看出,深度學習、機器學習和人工智慧之間存在著緊密的關聯和遞進關係。深度學習是機器學習的一個特定領域,而機器學習則是人工智慧的重要組成部分。這些領域之間的連結與相互促進,使得人工智慧技術不斷得以發展和改進。
何為人工智慧?
人工智慧(Artificial Intelligence, AI)是一個廣泛的概念,其主要目標在於開發能夠模擬、延伸甚至超越人類智慧的運算系統。它在許多領域都有具體應用,例如:
- 影像辨識(Image Recognition)是AI的一個重要分支,致力於研究如何使電腦透過視覺感測器獲取數據,並基於這些數據進行分析以識別影像中的物體、場景、行為等訊息,模擬人眼和大腦對視覺訊號的認知和理解過程。
- 自然語言處理(Natural Language Processing, NLP)則是讓電腦理解和產生人類自然語言的能力,涵蓋了諸如文本分類、語義解析、機器翻譯等多種任務,試圖模擬人類在聽說讀寫等方面的智能行為。
- 電腦視覺(Computer Vision, CV)更廣義地包含了影像識別,它還涉及到影像分析、視訊分析、三維重建等多個方面,旨在讓電腦從二維或三維影像中「看見」並理解世界,這是人類視覺系統的深層模仿。
- 知識圖譜(Knowledge Graph, KG)則是一種結構化的、用於儲存和表示實體及其相互間複雜關係的資料模型,它模擬的是人類在認知過程中累積和運用知識的能力,以及基於已有知識進行推理和學習的過程。
這些高階技術都圍繞著「模擬人類智慧」的核心概念展開研究和應用。它們專注於不同感知維度(如視覺、聽覺、思考邏輯等)的開發,共同推動了人工智慧技術的不斷發展和進步。
何為機器學習?
機器學習(Machine Learning, ML)是人工智慧(AI)領域中至關重要的一個分支。它透過利用各種演算法,讓電腦系統能夠自動從資料中學習規律和模式,藉此進行預測和決策,從而增強和擴展人類智慧的能力。
例如,在訓練一個貓識別模型時,機器學習處理的過程如下:
- #資料預處理:首先,對收集到的大量貓和非貓圖片進行預處理,包括縮放尺寸、灰階化、歸一化等操作,並將圖片轉換為特徵向量表示,這些特徵可能來自於手動設計的特徵提取技術,例如Haar-like特徵、局部二進位模式(LBP)或其他電腦視覺領域常用的特徵描述子。
- 特徵選擇與降維:根據問題特點選擇關鍵特徵,去除冗餘和無關訊息,有時還會使用PCA、LDA等降維方法進一步減少特徵維度,提高演算法效率。
- 模型訓練:接著用預處理過的帶有標籤的資料集來訓練選定的機器學習模型,透過調整模型參數來優化模型性能,使得模型能夠在給定特徵的情況下區分出貓和非貓的圖片。
- 模型評估與驗證:訓練完成後,使用獨立的測試集對模型進行評估,以確保模型具有良好的泛化能力,能夠準確地應用於未見過的新樣本。
常用的10大機器學習演算法有:決策樹、隨機森林、邏輯迴歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾科夫等。
何為深度學習?
深度學習(Deep Learning, DL)是機器學習的一種特殊形式,它透過深層神經網路結構模擬人腦處理資訊的方式,從而自動提取資料中的複雜特徵表示。
例如,在訓練一個貓咪辨識模型時,深度學習處理的過程如下:
(1) 資料預處理與準備:
- 收集大量的包含貓和非貓圖像的資料集,並對其進行清洗、標註,確保每張圖片都有對應的標籤(如「貓」或「非貓」)。
- 影像預處理:將所有影像調整為統一大小,進行歸一化處理、資料增強等操作。
(2) 模型設計與建構:
- 選擇深度學習架構,對於影像辨識任務,通常使用卷積神經網路(Convolutional Neural Network, CNN)。 CNN能有效提取影像的局部特徵,並透過多層結構進行抽象表示。
- 建構模型層次,包括卷積層(用於特徵提取)、池化層(減少計算量和防止過擬合)、全連接層(對特徵進行整合分類)以及可能的批量歸一化層、激活函數(如ReLU、sigmoid等)。
(3) 初始化參數與設定超參數:
- 初始化模型中各層權重與偏移,可以採用隨機初始化或特定初始化策略。
- 設定學習率、最佳化器(如SGD、Adam等)、批次大小、訓練週期(epoch)等超參數。
(4) 前向傳播:
- 將經過預處理的圖像輸入到模型中,透過各層的捲積、池化、線性變換等操作,最終得到輸出層的預測機率分佈,即模型判斷輸入圖片是貓的機率。
(5) 損失函數與反向傳播:
- 使用交叉熵損失函數或其他適合的損失函數來衡量模型預測結果與真實標籤之間的差異。
- 計算損失後,執行反向傳播演算法,計算損失關於模型參數的梯度,以便於更新參數。
(6) 最佳化與參數更新:
- 利用梯度下降或其他最佳化演算法根據梯度資訊調整模型參數,目的是使損失函數最小化。
- 在每個訓練迭代過程中,模型會不斷學習和調整參數,逐步提高對貓咪影像的辨識能力。
(7) 驗證與評估:
- 定期在驗證集上評估模型性能,監測準確率、精確率、召回率等指標的變化情況,以此指導模型訓練過程中的超參數調整和早停策略。
(8) 訓練完成與測試:
- 當模型在驗證集上的表現趨於穩定或達到預先設定的停止條件時,停止訓練。
- 最後,在獨立的測試集上評估模型的泛化能力,確保模型能夠有效地對未見過的新樣本進行貓的識別。
深度學習和機器學習的區別
深度學習和機器學習的區別在於:
1.解決問題的方法
#機器學習演算法通常依賴人為設計的特徵工程,即根據問題背景知識預先抽取關鍵特徵,然後基於這些特徵建立模型並進行最佳化求解。
深度學習則採取了端到端的學習方式,透過多層非線性變換自動產生高級抽象特徵,並且這些特徵是在整個訓練過程中不斷優化得到的,無需手動選擇和構造特徵,更接近人類大腦的認知處理方式。
舉個例子,如果你要寫一個軟體讓它去識別一輛轎車,如果使用機器學習,你需要人為提取汽車的特徵,比如大小和形狀等;而如果你使用深度學習,那麼人工智慧神經網路會自行提取這些特徵,不過它需要大量的標識為轎車的圖片來進行學習。
2.應用場景
機器學習在指紋辨識、特徵物件偵測等領域的應用基本上達到了商業化的要求。
深度學習主要應用於文字辨識、臉部技術、語意分析、智慧監控等領域。目前在智慧硬體、教育、醫療等產業也在快速佈局。
3.所需資料量
機器學習演算法在小樣本情況下也能展現出較好的性能,對於一些簡單任務或者特徵易於提取的問題,較少的數據即可達到滿意效果。
深度學習通常需要大量的標註資料來訓練深層神經網絡,其優勢在於能從原始資料直接學習複雜的模式和表示,尤其當資料規模增大時,深度學習模型的效能提升更為顯著。
4.執行時間
訓練階段,由於深度學習模型的層次更多、參數數量龐大,故訓練過程往往較為耗時,需要高效能運算資源的支持,如GPU集群。
相較之下,機器學習演算法(尤其是那些輕量級的模型)在訓練時間和運算資源需求上通常較小,更適合於快速迭代和實驗驗證。
以上是一文搞懂:AI、機器學習與深度學習的連結與區別的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显著提高。这表明,在单个统一的深度学习框架内,可以实现

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
